Python: Neural Networks
这是用Python实现的Neural Networks, 基于Python 2.7.9, numpy, matplotlib。
代码来源于斯坦福大学的课程: http://cs231n.github.io/neural-networks-case-study/
基本是照搬过来,通过这个程序有助于了解python语法,以及Neural Networks 的原理。
import numpy as np
import matplotlib.pyplot as plt
N = 200 # number of points per class
D = 2 # dimensionality
K = 3 # number of classes
X = np.zeros((N*K,D)) # data matrix (each row = single example)
y = np.zeros(N*K, dtype='uint8') # class labels
for j in xrange(K):
ix = range(N*j,N*(j+1))
r = np.linspace(0.0,1,N) # radius
t = np.linspace(j*4,(j+1)*4,N) + np.random.randn(N)*0.2 # theta
X[ix] = np.c_[r*np.sin(t), r*np.cos(t)]
y[ix] = j
# print y
# lets visualize the data:
plt.scatter(X[:,0], X[:,1], s=40, c=y, alpha=0.5)
plt.show()
# Train a Linear Classifier
# initialize parameters randomly
h = 20 # size of hidden layer
W = 0.01 * np.random.randn(D,h)
b = np.zeros((1,h))
W2 = 0.01 * np.random.randn(h,K)
b2 = np.zeros((1,K))
# define some hyperparameters
step_size = 1e-0
reg = 1e-3 # regularization strength
# gradient descent loop
num_examples = X.shape[0]
for i in xrange(1):
# evaluate class scores, [N x K]
hidden_layer = np.maximum(0, np.dot(X, W) + b) # note, ReLU activation
# print np.size(hidden_layer,1)
scores = np.dot(hidden_layer, W2) + b2
# compute the class probabilities
exp_scores = np.exp(scores)
probs = exp_scores / np.sum(exp_scores, axis=1, keepdims=True) # [N x K]
# compute the loss: average cross-entropy loss and regularization
corect_logprobs = -np.log(probs[range(num_examples),y])
data_loss = np.sum(corect_logprobs)/num_examples
reg_loss = 0.5*reg*np.sum(W*W) + 0.5*reg*np.sum(W2*W2)
loss = data_loss + reg_loss
if i % 1000 == 0:
print "iteration %d: loss %f" % (i, loss)
# compute the gradient on scores
dscores = probs
dscores[range(num_examples),y] -= 1
dscores /= num_examples
# backpropate the gradient to the parameters
# first backprop into parameters W2 and b2
dW2 = np.dot(hidden_layer.T, dscores)
db2 = np.sum(dscores, axis=0, keepdims=True)
# next backprop into hidden layer
dhidden = np.dot(dscores, W2.T)
# backprop the ReLU non-linearity
dhidden[hidden_layer <= 0] = 0
# finally into W,b
dW = np.dot(X.T, dhidden)
db = np.sum(dhidden, axis=0, keepdims=True)
# add regularization gradient contribution
dW2 += reg * W2
dW += reg * W
# perform a parameter update
W += -step_size * dW
b += -step_size * db
W2 += -step_size * dW2
b2 += -step_size * db2
# evaluate training set accuracy
hidden_layer = np.maximum(0, np.dot(X, W) + b)
scores = np.dot(hidden_layer, W2) + b2
predicted_class = np.argmax(scores, axis=1)
print 'training accuracy: %.2f' % (np.mean(predicted_class == y))
随机生成的数据
运行结果
Python: Neural Networks的更多相关文章
- 【转】Artificial Neurons and Single-Layer Neural Networks
原文:written by Sebastian Raschka on March 14, 2015 中文版译文:伯乐在线 - atmanic 翻译,toolate 校稿 This article of ...
- tensorfolw配置过程中遇到的一些问题及其解决过程的记录(配置SqueezeDet: Unified, Small, Low Power Fully Convolutional Neural Networks for Real-Time Object Detection for Autonomous Driving)
今天看到一篇关于检测的论文<SqueezeDet: Unified, Small, Low Power Fully Convolutional Neural Networks for Real- ...
- 卷积神经网络CNN(Convolutional Neural Networks)没有原理只有实现
零.说明: 本文的所有代码均可在 DML 找到,欢迎点星星. 注.CNN的这份代码非常慢,基本上没有实际使用的可能,所以我只是发出来,代表我还是实践过而已 一.引入: CNN这个模型实在是有些年份了, ...
- 循环神经网络(RNN, Recurrent Neural Networks)介绍(转载)
循环神经网络(RNN, Recurrent Neural Networks)介绍 这篇文章很多内容是参考:http://www.wildml.com/2015/09/recurrent-neur ...
- Training Deep Neural Networks
http://handong1587.github.io/deep_learning/2015/10/09/training-dnn.html //转载于 Training Deep Neural ...
- Hacker's guide to Neural Networks
Hacker's guide to Neural Networks Hi there, I'm a CS PhD student at Stanford. I've worked on Deep Le ...
- 深度学习笔记(三 )Constitutional Neural Networks
一. 预备知识 包括 Linear Regression, Logistic Regression和 Multi-Layer Neural Network.参考 http://ufldl.stanfo ...
- 提高神经网络的学习方式Improving the way neural networks learn
When a golf player is first learning to play golf, they usually spend most of their time developing ...
- Introduction to Deep Neural Networks
Introduction to Deep Neural Networks Neural networks are a set of algorithms, modeled loosely after ...
随机推荐
- sql 时间相关
1.常用日期方法(下面的GetDate() = '2006-11-08 13:37:56.233') (1)DATENAME ( datepart ,date ) 返回表示指定日期的指定日期部分的字符 ...
- 本地aar文件引用
有时须要使用第三方的aar库.或是project源码越来越大.项目内分工须要或出于模块化考虑.须要引用aar文件. arr就像C/C++中的静态库. 怎样建一个aar.网上的文章非常多,这里不再重述. ...
- ie6中 object doesn’t support this property or method
可能是由于方法或json中有注释,/**/或//删掉注释就可以了
- C# 实现和调用自定义扩展方法
定义和调用扩展方法 定义一个静态类以包含扩展方法.该类必须对客户端代码可见. 将该扩展方法实现为静态方法,并使其至少具有与包含类相同的可见性. 该方法的第一个参数指定方法所操作的类型:该参数必须以 t ...
- J2EE——开发环境搭建
WEB环境搭建 1.J2EE开发环境搭建(1)——安装JDK.Tomcat.Eclipse 2.JAVA运行环境和J2EE运行环境的搭建 3.jsp开发所需要的eclipse插件(lomboz.tom ...
- iis出现HTTP 错误 403.14 - Forbidden Web问题
找到"目录浏览",并"应用"
- Erlang服务器内存吃紧的优化解决方法
问题提出:服务器100万人在线,16G内存快被吃光.玩家进程占用内存偏高 解决方法: 第一步:erlang:system_info(process_count). 查看进程数目是否正常,是否超过了er ...
- JavaScript -- 没事看看
@.delete 原文:https://developer.mozilla.org/zh-CN/docs/Web/JavaScript/Reference/Operators/delete
- JBossWeb/Tomcat 初始化连接器和处理 Http 请求过程
概述 JBossWeb 是JBoss 中的 Web 容器.他是对 Tomcat 的封装,本文以 Http 连接器为例.简单说明 JBossWeb/Tomcat 初始化连接器和处理 Http 请求过程 ...
- LeetCode 017 4Sum
[题目] Given an array S of n integers, are there elements a, b, c, and d in S such that a + b + c + d ...