这是用Python实现的Neural Networks, 基于Python 2.7.9, numpy, matplotlib。

代码来源于斯坦福大学的课程: http://cs231n.github.io/neural-networks-case-study/

基本是照搬过来,通过这个程序有助于了解python语法,以及Neural Networks 的原理。

import numpy as np
import matplotlib.pyplot as plt N = 200 # number of points per class
D = 2 # dimensionality
K = 3 # number of classes
X = np.zeros((N*K,D)) # data matrix (each row = single example)
y = np.zeros(N*K, dtype='uint8') # class labels for j in xrange(K):
ix = range(N*j,N*(j+1))
r = np.linspace(0.0,1,N) # radius
t = np.linspace(j*4,(j+1)*4,N) + np.random.randn(N)*0.2 # theta
X[ix] = np.c_[r*np.sin(t), r*np.cos(t)]
y[ix] = j # print y # lets visualize the data:
plt.scatter(X[:,0], X[:,1], s=40, c=y, alpha=0.5)
plt.show() # Train a Linear Classifier # initialize parameters randomly h = 20 # size of hidden layer
W = 0.01 * np.random.randn(D,h)
b = np.zeros((1,h))
W2 = 0.01 * np.random.randn(h,K)
b2 = np.zeros((1,K)) # define some hyperparameters
step_size = 1e-0
reg = 1e-3 # regularization strength # gradient descent loop
num_examples = X.shape[0]
for i in xrange(1): # evaluate class scores, [N x K]
hidden_layer = np.maximum(0, np.dot(X, W) + b) # note, ReLU activation
# print np.size(hidden_layer,1)
scores = np.dot(hidden_layer, W2) + b2 # compute the class probabilities
exp_scores = np.exp(scores)
probs = exp_scores / np.sum(exp_scores, axis=1, keepdims=True) # [N x K] # compute the loss: average cross-entropy loss and regularization
corect_logprobs = -np.log(probs[range(num_examples),y])
data_loss = np.sum(corect_logprobs)/num_examples
reg_loss = 0.5*reg*np.sum(W*W) + 0.5*reg*np.sum(W2*W2)
loss = data_loss + reg_loss if i % 1000 == 0:
print "iteration %d: loss %f" % (i, loss) # compute the gradient on scores
dscores = probs
dscores[range(num_examples),y] -= 1
dscores /= num_examples # backpropate the gradient to the parameters
# first backprop into parameters W2 and b2
dW2 = np.dot(hidden_layer.T, dscores)
db2 = np.sum(dscores, axis=0, keepdims=True)
# next backprop into hidden layer
dhidden = np.dot(dscores, W2.T)
# backprop the ReLU non-linearity
dhidden[hidden_layer <= 0] = 0 # finally into W,b
dW = np.dot(X.T, dhidden)
db = np.sum(dhidden, axis=0, keepdims=True) # add regularization gradient contribution
dW2 += reg * W2
dW += reg * W # perform a parameter update
W += -step_size * dW
b += -step_size * db
W2 += -step_size * dW2
b2 += -step_size * db2 # evaluate training set accuracy
hidden_layer = np.maximum(0, np.dot(X, W) + b)
scores = np.dot(hidden_layer, W2) + b2
predicted_class = np.argmax(scores, axis=1) print 'training accuracy: %.2f' % (np.mean(predicted_class == y))

随机生成的数据

运行结果

Python: Neural Networks的更多相关文章

  1. 【转】Artificial Neurons and Single-Layer Neural Networks

    原文:written by Sebastian Raschka on March 14, 2015 中文版译文:伯乐在线 - atmanic 翻译,toolate 校稿 This article of ...

  2. tensorfolw配置过程中遇到的一些问题及其解决过程的记录(配置SqueezeDet: Unified, Small, Low Power Fully Convolutional Neural Networks for Real-Time Object Detection for Autonomous Driving)

    今天看到一篇关于检测的论文<SqueezeDet: Unified, Small, Low Power Fully Convolutional Neural Networks for Real- ...

  3. 卷积神经网络CNN(Convolutional Neural Networks)没有原理只有实现

    零.说明: 本文的所有代码均可在 DML 找到,欢迎点星星. 注.CNN的这份代码非常慢,基本上没有实际使用的可能,所以我只是发出来,代表我还是实践过而已 一.引入: CNN这个模型实在是有些年份了, ...

  4. 循环神经网络(RNN, Recurrent Neural Networks)介绍(转载)

    循环神经网络(RNN, Recurrent Neural Networks)介绍    这篇文章很多内容是参考:http://www.wildml.com/2015/09/recurrent-neur ...

  5. Training Deep Neural Networks

    http://handong1587.github.io/deep_learning/2015/10/09/training-dnn.html  //转载于 Training Deep Neural ...

  6. Hacker's guide to Neural Networks

    Hacker's guide to Neural Networks Hi there, I'm a CS PhD student at Stanford. I've worked on Deep Le ...

  7. 深度学习笔记(三 )Constitutional Neural Networks

    一. 预备知识 包括 Linear Regression, Logistic Regression和 Multi-Layer Neural Network.参考 http://ufldl.stanfo ...

  8. 提高神经网络的学习方式Improving the way neural networks learn

    When a golf player is first learning to play golf, they usually spend most of their time developing ...

  9. Introduction to Deep Neural Networks

    Introduction to Deep Neural Networks Neural networks are a set of algorithms, modeled loosely after ...

随机推荐

  1. Android常用资源

    Eclipse ADT http://developer.android.com/sdk/installing/installing-adt.html https://dl-ssl.google.co ...

  2. solr入门之pinyin4j源代码改写动态加入扩展词及整合进war项目中

    1.初始化时载入用户定义的字典 package net.sourceforge.pinyin4j; import net.sourceforge.pinyin4j.multipinyin.Trie; ...

  3. we are experimenting with a new init system and it is fun

    http://0pointer.de/blog/projects/systemd.html Rethinking PID 1 If you are well connected or good at ...

  4. Linux相互排斥与同步应用(三):posix线程实现单个生产者和单个消费者模型

            [版权声明:尊重原创.转载请保留出处:blog.csdn.net/shallnet 或 .../gentleliu.文章仅供学习交流,请勿用于商业用途]         在第一节说到了 ...

  5. SpringBoot启动流程分析(一):SpringApplication类初始化过程

    SpringBoot系列文章简介 SpringBoot源码阅读辅助篇: Spring IoC容器与应用上下文的设计与实现 SpringBoot启动流程源码分析: SpringBoot启动流程分析(一) ...

  6. 使用css counter来美化代码片段的样式

    博客园默认的代码片段样式不太美观,特别是复制代码时会把前面的行号也复制下来,操作起来比较麻烦.最近看到一种使用CSS计数器来美化代码片段的方法,于是研究了一下计数器的使用,在此做个笔记. 这是官网的例 ...

  7. 【Java】 Spring依赖注入小试牛刀:编写第一个Spring ApplicationContext Demo

    0  Spring的依赖注入大致是这样工作的: 将对象如何构造(ID是什么?是什么类型?给属性设置什么值?给构造函数传入什么值?)写入外部XML文件里.在调用者需要调用某个类时,不自行构造该类的对象, ...

  8. 在IDEA建立Maven的多模块Web项目

    由于要搭建的是Maven项目,考虑到后面可能会有扩展,因此项目搭建的分模块的. 下面一步一步的来搭建这个项目 打开IDEA集成开发环境,点击File ---> New ---> Proje ...

  9. kaptcha的和springboot一起使用的简单例子

    https://blog.csdn.net/xiaoyu19910321/article/details/79296030

  10. 将到来的战略转变:移动 Web 还是移动 Apps?

    目前来看,移动应用比移动网站的易用性更高,但变化即将发生,移动网站最终将优于Apps,成为更好的策略选择. 一家公司制定移动策略时,最重要的问题是:是否需要考虑为移动设备特别做点什么.一些公司永远都不 ...