这是用Python实现的Neural Networks, 基于Python 2.7.9, numpy, matplotlib。

代码来源于斯坦福大学的课程: http://cs231n.github.io/neural-networks-case-study/

基本是照搬过来,通过这个程序有助于了解python语法,以及Neural Networks 的原理。

import numpy as np
import matplotlib.pyplot as plt N = 200 # number of points per class
D = 2 # dimensionality
K = 3 # number of classes
X = np.zeros((N*K,D)) # data matrix (each row = single example)
y = np.zeros(N*K, dtype='uint8') # class labels for j in xrange(K):
ix = range(N*j,N*(j+1))
r = np.linspace(0.0,1,N) # radius
t = np.linspace(j*4,(j+1)*4,N) + np.random.randn(N)*0.2 # theta
X[ix] = np.c_[r*np.sin(t), r*np.cos(t)]
y[ix] = j # print y # lets visualize the data:
plt.scatter(X[:,0], X[:,1], s=40, c=y, alpha=0.5)
plt.show() # Train a Linear Classifier # initialize parameters randomly h = 20 # size of hidden layer
W = 0.01 * np.random.randn(D,h)
b = np.zeros((1,h))
W2 = 0.01 * np.random.randn(h,K)
b2 = np.zeros((1,K)) # define some hyperparameters
step_size = 1e-0
reg = 1e-3 # regularization strength # gradient descent loop
num_examples = X.shape[0]
for i in xrange(1): # evaluate class scores, [N x K]
hidden_layer = np.maximum(0, np.dot(X, W) + b) # note, ReLU activation
# print np.size(hidden_layer,1)
scores = np.dot(hidden_layer, W2) + b2 # compute the class probabilities
exp_scores = np.exp(scores)
probs = exp_scores / np.sum(exp_scores, axis=1, keepdims=True) # [N x K] # compute the loss: average cross-entropy loss and regularization
corect_logprobs = -np.log(probs[range(num_examples),y])
data_loss = np.sum(corect_logprobs)/num_examples
reg_loss = 0.5*reg*np.sum(W*W) + 0.5*reg*np.sum(W2*W2)
loss = data_loss + reg_loss if i % 1000 == 0:
print "iteration %d: loss %f" % (i, loss) # compute the gradient on scores
dscores = probs
dscores[range(num_examples),y] -= 1
dscores /= num_examples # backpropate the gradient to the parameters
# first backprop into parameters W2 and b2
dW2 = np.dot(hidden_layer.T, dscores)
db2 = np.sum(dscores, axis=0, keepdims=True)
# next backprop into hidden layer
dhidden = np.dot(dscores, W2.T)
# backprop the ReLU non-linearity
dhidden[hidden_layer <= 0] = 0 # finally into W,b
dW = np.dot(X.T, dhidden)
db = np.sum(dhidden, axis=0, keepdims=True) # add regularization gradient contribution
dW2 += reg * W2
dW += reg * W # perform a parameter update
W += -step_size * dW
b += -step_size * db
W2 += -step_size * dW2
b2 += -step_size * db2 # evaluate training set accuracy
hidden_layer = np.maximum(0, np.dot(X, W) + b)
scores = np.dot(hidden_layer, W2) + b2
predicted_class = np.argmax(scores, axis=1) print 'training accuracy: %.2f' % (np.mean(predicted_class == y))

随机生成的数据

运行结果

Python: Neural Networks的更多相关文章

  1. 【转】Artificial Neurons and Single-Layer Neural Networks

    原文:written by Sebastian Raschka on March 14, 2015 中文版译文:伯乐在线 - atmanic 翻译,toolate 校稿 This article of ...

  2. tensorfolw配置过程中遇到的一些问题及其解决过程的记录(配置SqueezeDet: Unified, Small, Low Power Fully Convolutional Neural Networks for Real-Time Object Detection for Autonomous Driving)

    今天看到一篇关于检测的论文<SqueezeDet: Unified, Small, Low Power Fully Convolutional Neural Networks for Real- ...

  3. 卷积神经网络CNN(Convolutional Neural Networks)没有原理只有实现

    零.说明: 本文的所有代码均可在 DML 找到,欢迎点星星. 注.CNN的这份代码非常慢,基本上没有实际使用的可能,所以我只是发出来,代表我还是实践过而已 一.引入: CNN这个模型实在是有些年份了, ...

  4. 循环神经网络(RNN, Recurrent Neural Networks)介绍(转载)

    循环神经网络(RNN, Recurrent Neural Networks)介绍    这篇文章很多内容是参考:http://www.wildml.com/2015/09/recurrent-neur ...

  5. Training Deep Neural Networks

    http://handong1587.github.io/deep_learning/2015/10/09/training-dnn.html  //转载于 Training Deep Neural ...

  6. Hacker's guide to Neural Networks

    Hacker's guide to Neural Networks Hi there, I'm a CS PhD student at Stanford. I've worked on Deep Le ...

  7. 深度学习笔记(三 )Constitutional Neural Networks

    一. 预备知识 包括 Linear Regression, Logistic Regression和 Multi-Layer Neural Network.参考 http://ufldl.stanfo ...

  8. 提高神经网络的学习方式Improving the way neural networks learn

    When a golf player is first learning to play golf, they usually spend most of their time developing ...

  9. Introduction to Deep Neural Networks

    Introduction to Deep Neural Networks Neural networks are a set of algorithms, modeled loosely after ...

随机推荐

  1. sql 时间相关

    1.常用日期方法(下面的GetDate() = '2006-11-08 13:37:56.233') (1)DATENAME ( datepart ,date ) 返回表示指定日期的指定日期部分的字符 ...

  2. 本地aar文件引用

    有时须要使用第三方的aar库.或是project源码越来越大.项目内分工须要或出于模块化考虑.须要引用aar文件. arr就像C/C++中的静态库. 怎样建一个aar.网上的文章非常多,这里不再重述. ...

  3. ie6中 object doesn’t support this property or method

    可能是由于方法或json中有注释,/**/或//删掉注释就可以了

  4. C# 实现和调用自定义扩展方法

    定义和调用扩展方法 定义一个静态类以包含扩展方法.该类必须对客户端代码可见. 将该扩展方法实现为静态方法,并使其至少具有与包含类相同的可见性. 该方法的第一个参数指定方法所操作的类型:该参数必须以 t ...

  5. J2EE——开发环境搭建

    WEB环境搭建 1.J2EE开发环境搭建(1)——安装JDK.Tomcat.Eclipse 2.JAVA运行环境和J2EE运行环境的搭建 3.jsp开发所需要的eclipse插件(lomboz.tom ...

  6. iis出现HTTP 错误 403.14 - Forbidden Web问题

    找到"目录浏览",并"应用"

  7. Erlang服务器内存吃紧的优化解决方法

    问题提出:服务器100万人在线,16G内存快被吃光.玩家进程占用内存偏高 解决方法: 第一步:erlang:system_info(process_count). 查看进程数目是否正常,是否超过了er ...

  8. JavaScript -- 没事看看

    @.delete 原文:https://developer.mozilla.org/zh-CN/docs/Web/JavaScript/Reference/Operators/delete

  9. JBossWeb/Tomcat 初始化连接器和处理 Http 请求过程

    概述 JBossWeb 是JBoss 中的 Web 容器.他是对 Tomcat 的封装,本文以 Http 连接器为例.简单说明 JBossWeb/Tomcat 初始化连接器和处理 Http 请求过程 ...

  10. LeetCode 017 4Sum

    [题目] Given an array S of n integers, are there elements a, b, c, and d in S such that a + b + c + d  ...