这是用Python实现的Neural Networks, 基于Python 2.7.9, numpy, matplotlib。

代码来源于斯坦福大学的课程: http://cs231n.github.io/neural-networks-case-study/

基本是照搬过来,通过这个程序有助于了解python语法,以及Neural Networks 的原理。

import numpy as np
import matplotlib.pyplot as plt N = 200 # number of points per class
D = 2 # dimensionality
K = 3 # number of classes
X = np.zeros((N*K,D)) # data matrix (each row = single example)
y = np.zeros(N*K, dtype='uint8') # class labels for j in xrange(K):
ix = range(N*j,N*(j+1))
r = np.linspace(0.0,1,N) # radius
t = np.linspace(j*4,(j+1)*4,N) + np.random.randn(N)*0.2 # theta
X[ix] = np.c_[r*np.sin(t), r*np.cos(t)]
y[ix] = j # print y # lets visualize the data:
plt.scatter(X[:,0], X[:,1], s=40, c=y, alpha=0.5)
plt.show() # Train a Linear Classifier # initialize parameters randomly h = 20 # size of hidden layer
W = 0.01 * np.random.randn(D,h)
b = np.zeros((1,h))
W2 = 0.01 * np.random.randn(h,K)
b2 = np.zeros((1,K)) # define some hyperparameters
step_size = 1e-0
reg = 1e-3 # regularization strength # gradient descent loop
num_examples = X.shape[0]
for i in xrange(1): # evaluate class scores, [N x K]
hidden_layer = np.maximum(0, np.dot(X, W) + b) # note, ReLU activation
# print np.size(hidden_layer,1)
scores = np.dot(hidden_layer, W2) + b2 # compute the class probabilities
exp_scores = np.exp(scores)
probs = exp_scores / np.sum(exp_scores, axis=1, keepdims=True) # [N x K] # compute the loss: average cross-entropy loss and regularization
corect_logprobs = -np.log(probs[range(num_examples),y])
data_loss = np.sum(corect_logprobs)/num_examples
reg_loss = 0.5*reg*np.sum(W*W) + 0.5*reg*np.sum(W2*W2)
loss = data_loss + reg_loss if i % 1000 == 0:
print "iteration %d: loss %f" % (i, loss) # compute the gradient on scores
dscores = probs
dscores[range(num_examples),y] -= 1
dscores /= num_examples # backpropate the gradient to the parameters
# first backprop into parameters W2 and b2
dW2 = np.dot(hidden_layer.T, dscores)
db2 = np.sum(dscores, axis=0, keepdims=True)
# next backprop into hidden layer
dhidden = np.dot(dscores, W2.T)
# backprop the ReLU non-linearity
dhidden[hidden_layer <= 0] = 0 # finally into W,b
dW = np.dot(X.T, dhidden)
db = np.sum(dhidden, axis=0, keepdims=True) # add regularization gradient contribution
dW2 += reg * W2
dW += reg * W # perform a parameter update
W += -step_size * dW
b += -step_size * db
W2 += -step_size * dW2
b2 += -step_size * db2 # evaluate training set accuracy
hidden_layer = np.maximum(0, np.dot(X, W) + b)
scores = np.dot(hidden_layer, W2) + b2
predicted_class = np.argmax(scores, axis=1) print 'training accuracy: %.2f' % (np.mean(predicted_class == y))

随机生成的数据

运行结果

Python: Neural Networks的更多相关文章

  1. 【转】Artificial Neurons and Single-Layer Neural Networks

    原文:written by Sebastian Raschka on March 14, 2015 中文版译文:伯乐在线 - atmanic 翻译,toolate 校稿 This article of ...

  2. tensorfolw配置过程中遇到的一些问题及其解决过程的记录(配置SqueezeDet: Unified, Small, Low Power Fully Convolutional Neural Networks for Real-Time Object Detection for Autonomous Driving)

    今天看到一篇关于检测的论文<SqueezeDet: Unified, Small, Low Power Fully Convolutional Neural Networks for Real- ...

  3. 卷积神经网络CNN(Convolutional Neural Networks)没有原理只有实现

    零.说明: 本文的所有代码均可在 DML 找到,欢迎点星星. 注.CNN的这份代码非常慢,基本上没有实际使用的可能,所以我只是发出来,代表我还是实践过而已 一.引入: CNN这个模型实在是有些年份了, ...

  4. 循环神经网络(RNN, Recurrent Neural Networks)介绍(转载)

    循环神经网络(RNN, Recurrent Neural Networks)介绍    这篇文章很多内容是参考:http://www.wildml.com/2015/09/recurrent-neur ...

  5. Training Deep Neural Networks

    http://handong1587.github.io/deep_learning/2015/10/09/training-dnn.html  //转载于 Training Deep Neural ...

  6. Hacker's guide to Neural Networks

    Hacker's guide to Neural Networks Hi there, I'm a CS PhD student at Stanford. I've worked on Deep Le ...

  7. 深度学习笔记(三 )Constitutional Neural Networks

    一. 预备知识 包括 Linear Regression, Logistic Regression和 Multi-Layer Neural Network.参考 http://ufldl.stanfo ...

  8. 提高神经网络的学习方式Improving the way neural networks learn

    When a golf player is first learning to play golf, they usually spend most of their time developing ...

  9. Introduction to Deep Neural Networks

    Introduction to Deep Neural Networks Neural networks are a set of algorithms, modeled loosely after ...

随机推荐

  1. Solr局部或指定字段更新之set用法

    solr wiki文档也有        http://yonik.com/solr/atomic-updates/         java code   public static void up ...

  2. g2o 初始化

    typedef g2o::BlockSolver< g2o::BlockSolverTraits<,> > Block; // pose 维度为 6, landmark 维度为 ...

  3. Java开启/关闭tomcat服务器

    © 版权声明:本文为博主原创文章,转载请注明出处 通过java代码实现Tomcat的开启与关闭 1.项目结构 2.CallTomcat.java package com.calltomcat.test ...

  4. mysql解决中文乱码

    mysql>use mydb; mysql>alter database mydb  character set utf8;! 这种方法只对设置后重新创建的表有效,对已存在的表无效 des ...

  5. request 请求转发

    package request; import java.io.IOException;import javax.servlet.ServletException;import javax.servl ...

  6. Linux进入单用户模式

    有时候配置linux的过程中,因为一些误操作导致系统初始化时堵塞或挂起而无法进入系统,原因往往是因为配置文件设置错误,部分文件被误删之类.遇到这种情况一般新手的做法就是重装(虚拟机不装白不装),但在实 ...

  7. 在linux系统中I/O 调度的选择 (转)

    I/O 调度算法再各个进程竞争磁盘I/O的时候担当了裁判的角色.他要求请求的次序和时机做最优化的处理,以求得尽可能最好的整体I/O性能. 在linux下面列出4种调度算法 CFQ (Completel ...

  8. 异常: 2 字节的 UTF-8 序列的字节 2 无效。

    具体异常: 十二月 08, 2015 7:16:55 下午 org.apache.catalina.core.StandardWrapperValve invoke 严重: Servlet.servi ...

  9. weblogic宕机crash问题解决分享

    近期比較烦躁.系统频繁出现宕机.weblogic控制台打印出例如以下内容: # Afatal error has been detected by the Java Runtime Environme ...

  10. fzu 2039 Pets (简单二分图 + (最大流 || 二分图))

    Are you interested in pets? There is a very famous pets shop in the center of the ACM city. There ar ...