ATT汇编与Intel汇编的区别,摘自《深入分析linux内核源码》一书
2.6.1 AT&T与Intel汇编语言的比较
我们知道,Linux是Unix家族的一员,尽管Linux的历史不长,但与其相关的很多事情都发源于Unix。就Linux所使用的386汇编语言而言,它也是起源于Unix。Unix最初是为PDP-11开发的,曾先后被移植到VAX及68000系列的处理器上,这些处理器上的汇编语言都采用的是AT&T的指令格式。当Unix被移植到i386时,自然也就采用了AT&T的汇编语言格式,而不是Intel的格式。尽管这两种汇编语言在语法上有一定的差异,但所基于的硬件知识是相同的,因此,如果你非常熟悉Intel的语法格式,那么你也可以很容易地把它“移植“到AT&T来。下面我们通过对照Intel与AT&T的语法格式,以便于你把过去的知识能很快地“移植”过来。
1.前缀
在Intel的语法中,寄存器和和立即数都没有前缀。但是在AT&T中,寄存器前冠以“%”,而立即数前冠以“$”。在Intel的语法中,十六进制和二进制立即数后缀分别冠以“h”和“b”,而在AT&T中,十六进制立即数前冠以“0x”,表2.2给出几个相应的例子。
表2.2 Intel与AT&T前缀的区别
| 
 Intel语法  | 
 AT&T语法  | 
| 
 mov eax,8  | 
 movl $8,%eax  | 
| 
 mov ebx,0ffffh  | 
 movl $0xffff,%ebx  | 
| 
 int 80h  | 
 int $0x80  | 
2. 操作数的方向
Intel与AT&T操作数的方向正好相反。在Intel语法中,第一个操作数是目的操作数,第二个操作数源操作数。而在AT&T中,第一个数是源操作数,第二个数是目的操作数。由此可以看出,AT&T 的语法符合人们通常的阅读习惯。
例如:在Intel中, mov eax,[ecx]
在AT&T中,movl (%ecx),%eax
3.内存单元操作数
从上面的例子可以看出,内存操作数也有所不同。在Intel的语法中,基寄存器用“[]”括起来,而在AT&T中,用“()”括起来。
例如: 在Intel中,mov eax,[ebx+5]
在AT&T,movl 5(%ebx),%eax
4.间接寻址方式
与Intel的语法比较,AT&T间接寻址方式可能更晦涩难懂一些。Intel的指令格式是segreg:[base+index*scale+disp],而AT&T的格式是%segreg:disp(base,index,scale)。其中index/scale/disp/segreg全部是可选的,完全可以简化掉。如果没有指定scale而指定了index,则scale的缺省值为1。segreg段寄存器依赖于指令以及应用程序是运行在实模式还是保护模式下,在实模式下,它依赖于指令,而在保护模式下,segreg是多余的。在AT&T中,当立即数用在scale/disp中时,不应当在其前冠以“$”前缀,表2.3给出其语法及几个相应的例子。
表2.3 内存操作数的语法及举例
| 
 Intel语法  | 
 AT&T语法  | 
| 
 指令 foo,segreg:[base+index*scale+disp]  | 
 指令 %segreg:disp(base,index,scale),foo  | 
| 
 mov eax,[ebx+20h]  | 
 Movl 0x20(%ebx),%eax  | 
| 
 add eax,[ebx+ecx*2h  | 
 Addl (%ebx,%ecx,0x2),%eax  | 
| 
 lea eax,[ebx+ecx]  | 
 Leal (%ebx,%ecx),%eax  | 
| 
 sub eax,[ebx+ecx*4h-20h]  | 
 Subl -0x20(%ebx,%ecx,0x4),%eax  | 
从表中可以看出,AT&T的语法比较晦涩难懂,因为[base+index*scale+disp]一眼就可以看出其含义,而disp(base,index,scale)则不可能做到这点。
这种寻址方式常常用在访问数据结构数组中某个特定元素内的一个字段,其中,base为数组的起始地址,scale为每个数组元素的大小,index为下标。如果数组元素还是一个结构,则disp为具体字段在结构中的位移。
5.操作码的后缀
在上面的例子中你可能已注意到,在AT&T的操作码后面有一个后缀,其含义就是指出操作码的大小。“l”表示长整数(32位),“w”表示字(16位),“b”表示字节(8位)。而在Intel的语法中,则要在内存单元操作数的前面加上byte ptr、 word ptr,和dword ptr,“dword”对应“long”。表2.4给出几个相应的例子。
表2.4 操作码的后缀举例
| 
 Intel语法  | 
 AT&T语法  | 
| 
 Mov al,bl  | 
 movb %bl,%al  | 
| 
 Mov ax,bx  | 
 movw %bx,%ax  | 
| 
 Mov eax,ebx  | 
 movl %ebx,%eax  | 
| 
 Mov eax, dword ptr [ebx]  | 
 movl (%ebx),%eax  | 
ATT汇编与Intel汇编的区别,摘自《深入分析linux内核源码》一书的更多相关文章
- Linux内核源码分析--内核启动之(2)Image内核启动(汇编部分)(Linux-3.0 ARMv7) 【转】
		
转自:http://blog.chinaunix.net/uid-25909619-id-4938389.html 在完成了zImage自解压之后,就跳转到了解压后的内核(也就是vmlinux的bin ...
 - Intel X86 32位CPU内存管理----《Linux内核源码情景分析》笔记(一)
		
Intel X86 32位CPU内存管理 在X86系列中,8086和8088是16为处理器,而从80386开始为32为处理器,80286则是该系列从8088到80386,也就是16位处理器到32位处理 ...
 - linux-0.11 内核源码学习笔记一(嵌入式汇编语法及使用)
		
linux内核源码虽然是用C写的,不过其中有很多用嵌入式汇编直接操作底层硬件的“宏函数”,要想顺利的理解内核理论和具体实现逻辑,学会看嵌入式汇编是必修课,下面内容是学习过程中的笔记:当做回顾时的参考. ...
 - 鸿蒙内核源码分析(汇编传参篇) | 如何传递复杂的参数 | 百篇博客分析OpenHarmony源码 | v23.02
		
百篇博客系列篇.本篇为: v23.xx 鸿蒙内核源码分析(汇编传参篇) | 如何传递复杂的参数 | 51.c.h .o 硬件架构相关篇为: v22.xx 鸿蒙内核源码分析(汇编基础篇) | CPU在哪 ...
 - 鸿蒙内核源码分析(任务切换篇) | 看汇编如何切换任务 | 百篇博客分析OpenHarmony源码 | v41.03
		
百篇博客系列篇.本篇为: v41.xx 鸿蒙内核源码分析(任务切换篇) | 看汇编如何切换任务 | 51.c.h .o 任务管理相关篇为: v03.xx 鸿蒙内核源码分析(时钟任务篇) | 触发调度谁 ...
 - 鸿蒙内核源码分析(汇编汇总篇) | 所有的汇编代码都在这里 | 百篇博客分析OpenHarmony源码 | v40.03
		
百篇博客系列篇.本篇为: v40.xx 鸿蒙内核源码分析(汇编汇总篇) | 汇编可爱如邻家女孩 | 51.c.h .o 硬件架构相关篇为: v22.xx 鸿蒙内核源码分析(汇编基础篇) | CPU在哪 ...
 - 鸿蒙内核源码分析(汇编基础篇) | CPU在哪里打卡上班? | 百篇博客分析OpenHarmony源码 | v22.01
		
百篇博客系列篇.本篇为: v22.xx 鸿蒙内核源码分析(汇编基础篇) | CPU在哪里打卡上班 | 51.c.h .o 硬件架构相关篇为: v22.xx 鸿蒙内核源码分析(汇编基础篇) | CPU在 ...
 - 鸿蒙内核源码分析(内存汇编篇) | 谁是虚拟内存实现的基础 | 百篇博客分析OpenHarmony源码 | v14.14
		
百篇博客系列篇.本篇为: v14.xx 鸿蒙内核源码分析(内存汇编篇) | 谁是虚拟内存实现的基础 | 51.c.h .o 内存管理相关篇为: v11.xx 鸿蒙内核源码分析(内存分配篇) | 内存有 ...
 - v87.01 鸿蒙内核源码分析 (内核启动篇) | 从汇编到 main () | 百篇博客分析 OpenHarmony 源码
		
本篇关键词:内核重定位.MMU.SVC栈.热启动.内核映射表 内核汇编相关篇为: v74.01 鸿蒙内核源码分析(编码方式) | 机器指令是如何编码的 v75.03 鸿蒙内核源码分析(汇编基础) | ...
 
随机推荐
- ES6_Promise 对象  阮一锋
			
Promise的含义 promise是异步编程的一种解决方法,比传统的回调函数和事件更合理更强大.他由社区最早提出和实现,ES6将其写进语言标准,统一了用法,原生提供了promise对象.所谓prom ...
 - Voyager下的关系模型
			
关系:一个用户有几件商品,对应User表和Products表 在Products表下添加字段,user_id 打开products下的bread,点击Create Relationship Produ ...
 - 二分查找、upper_bound、lower_bound
			
整理及总结二分查找的判断和边界细节 修改版 package com.leej.binarysearch; import java.util.Arrays; /** * @author jerry * ...
 - MySQL中CONCAT()的用法
			
MySQL中CONCAT()的用法 在日常开发过程中,特别是在书写接口的时候,经常会遇到字符串拼接的情况,比如在返回图片数据时,数据库里往往存储的是相对路径,而接口里一般是存放绝对地址,这就需要字符串 ...
 - hdu-2544     最短路(最短路)
			
Time limit1000 ms Memory limit32768 kB 在每年的校赛里,所有进入决赛的同学都会获得一件很漂亮的t-shirt.但是每当我们的工作人员把上百件的衣服从商店运回到 ...
 - Linux压缩与归档
			
文件的压缩 aaaaaabbbbccc压缩成为6a4b3c 压缩工具: gzip/gunzip: .gz后缀 只能压缩文件,不能压缩目录,因其不具备归档功能 ...
 - HDU 5536 Chip Factory Trie
			
题意: 给出\(n(3 \leq n \leq 1000)\)个数字,求\(max(s_i+s_j) \bigoplus s_k\),而且\(i,j,k\)互不相等. 分析: 把每个数字看成一个\(0 ...
 - Python ORM
			
本章内容 ORM介绍 sqlalchemy安装 sqlalchemy基本使用 多外键关联 多对多关系 表结构设计作业 ORM介绍 如果写程序用pymysql和程序交互,那是不是要写原生sql语句.如果 ...
 - oracle 控制文件的重建
			
目录 oracle 控制文件的重建 NORESETLOGS RESETLOGS oracle 控制文件的重建 不到最后时刻,如三个控制文件都已损坏,又没有控制文件的备份.还是不要重建控制文件,处理不好 ...
 - Oracle Flashback(flashback table或drop)
			
在Oracle 10g中,Flash back家族分为以下成员:Flashback DatabaseFlashback DropFlashback TableFlashback Query(分Flas ...