Find a path

Frog fell into a maze. This maze is a rectangle containing NN rows and MM columns. Each grid in this maze contains a number, which is called the magic value. Frog now stays at grid (1, 1), and he wants to go to grid (N, M). For each step, he can go to either the grid right to his current location or the grid below his location. Formally, he can move from grid (x, y) to (x + 1, y) or (x, y +1), if the grid he wants to go exists. 
Frog is a perfectionist, so he'd like to find the most beautiful path. He defines the beauty of a path in the following way. Let’s denote the magic values along a path from (1, 1) to (n, m) as A1,A2,…AN+M−1A1,A2,…AN+M−1, and AavgAavg is the average value of all AiAi. The beauty of the path is (N+M–1)(N+M–1) multiplies the variance of the values:(N+M−1)∑N+M−1i=1(Ai−Aavg)2(N+M−1)∑i=1N+M−1(Ai−Aavg)2 
In Frog's opinion, the smaller, the better. A path with smaller beauty value is more beautiful. He asks you to help him find the most beautiful path. 

InputThe first line of input contains a number TT indicating the number of test cases (T≤50T≤50). 
Each test case starts with a line containing two integers NN and MM (1≤N,M≤301≤N,M≤30). Each of the next NN lines contains MM non-negative integers, indicating the magic values. The magic values are no greater than 30. 
OutputFor each test case, output a single line consisting of “Case #X: Y”. XX is the test case number starting from 1. YY is the minimum beauty value.Sample Input

1
2 2
1 2
3 4

Sample Output

Case #1: 14

将公式变形得:(n+m-1)*ΣAi^2-(ΣAi)^2
dp求出每种和的最小的平方和,最后找出满足公式的最小解。
#include<bits/stdc++.h>
#define MAX 31
#define INF 0x3f3f3f3f
using namespace std;
typedef long long ll; int a[MAX][MAX];
int dp[MAX][MAX][]; int main()
{
int tt=,t,n,m,i,j,k;
scanf("%d",&t);
while(t--){
scanf("%d%d",&n,&m);
for(i=;i<=n;i++){
for(j=;j<=m;j++){
scanf("%d",&a[i][j]);
}
}
memset(dp,INF,sizeof(dp));
dp[][][]=;dp[][][]=;
for(i=;i<=n;i++){
for(j=;j<=m;j++){
for(k=;k<=;k++){
if(k+a[i][j]<=) dp[i][j][k+a[i][j]]=min(dp[i][j][k+a[i][j]],min(dp[i-][j][k],dp[i][j-][k])+a[i][j]*a[i][j]);
}
}
}
int ans=INF;
for(i=;i<=;i++){
if(dp[n][m][i]!=INF){
ans=min(ans,(n+m-)*dp[n][m][i]-i*i);
}
}
printf("Case #%d: %d\n",++tt,ans);
}
return ;
}

HDU - 5492 Find a path(方差公式+dp)的更多相关文章

  1. 2015合肥网络赛 HDU 5492 Find a path 动归

    HDU 5492 Find a path 题意:给你一个矩阵求一个路径使得 最小. 思路: 方法一:数据特别小,直接枚举权值和(n + m - 1) * aver,更新答案. 方法二:用f[i][j] ...

  2. HDU 5492 Find a path

    Find a path Time Limit: 1000ms Memory Limit: 32768KB This problem will be judged on HDU. Original ID ...

  3. hdu 5492 Find a path(dp+少量数学)2015 ACM/ICPC Asia Regional Hefei Online

    题意: 给出一个n*m的地图,要求从左上角(0, 0)走到右下角(n-1, m-1). 地图中每个格子中有一个值.然后根据这些值求出一个最小值. 这个最小值要这么求—— 这是我们从起点走到终点的路径, ...

  4. 【动态规划】HDU 5492 Find a path (2015 ACM/ICPC Asia Regional Hefei Online)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5492 题目大意: 一个N*M的矩阵,一个人从(1,1)走到(N,M),每次只能向下或向右走.求(N+ ...

  5. hdu 5025 Saving Tang Monk 状态压缩dp+广搜

    作者:jostree 转载请注明出处 http://www.cnblogs.com/jostree/p/4092939.html 题目链接:hdu 5025 Saving Tang Monk 状态压缩 ...

  6. HDU 3016 Man Down (线段树+dp)

    HDU 3016 Man Down (线段树+dp) Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Ja ...

  7. HDU - 2290 Find the Path(最短路)

    HDU - 2290 Find the Path Time Limit: 5000MS   Memory Limit: 64768KB   64bit IO Format: %I64d & % ...

  8. HDU 3341 Lost's revenge AC自动机+dp

    Lost's revenge Time Limit: 15000/5000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)T ...

  9. HDU 2457 DNA repair(AC自动机+DP)题解

    题意:给你几个模式串,问你主串最少改几个字符能够使主串不包含模式串 思路:从昨天中午开始研究,研究到现在终于看懂了.既然是多模匹配,我们是要用到AC自动机的.我们把主串放到AC自动机上跑,并保证不出现 ...

随机推荐

  1. mybatis 执行查询时报错 【Error querying database. Cause: java.sql.SQLException: Error setting driver on UnpooledDataSource. Cause: java.lang.ClassNotFoundException: Cannot find class: 】

    org.apache.ibatis.exceptions.PersistenceException: ### Error querying database. Cause: java.sql.SQLE ...

  2. 【题解】P4799[CEOI2015 Day2]世界冰球锦标赛

    [题解][P4799 CEOI2015 Day2]世界冰球锦标赛 发现买票顺序和答案无关,又发现\(n\le40\),又发现从后面往前面买可以通过\(M\)来和从前面往后面买的方案进行联系.可以知道是 ...

  3. git版本控制-- Windows+Git+TortoiseGit+COPSSH安装图文教程

    Windows+Git+TortoiseGit+COPSSH 安装图文教程 教程网址: http://www.liaoxuefeng.com/wiki/0013739516305929606dd183 ...

  4. wifi androd 整体框架

    1. http://blog.csdn.net/myarrow/article/details/8129607/ 2.  http://blog.csdn.net/liuhaomatou/articl ...

  5. java集合讲解干货集

    文章都来自网络,收集后便于查阅. 1.Java 集合系列01之 总体框架 2.Java 集合系列02之 Collection架构 3.Java 集合系列03之 ArrayList详细介绍(源码解析)和 ...

  6. UVA - 10305 【全排列】

    题意 要求给出一组 包含 1 - N 的数字的序列 要求这个序列 满足 题给的限制条件 比如 1 2 就是 1 一定要在 2 前面 思路 因为 数据规模较小 可以用 全排列 然后判断每个序列 是否满足 ...

  7. ASP.NET 4.0 页面 ValidateRequest="false" 失效不起作用

    当ASP.NET 2.0升级到 ASP.NET 4.0后,页面的 ValidateRequest="false" 不起作用. 因为 ASP.NET 4.0 请求验证被提前到IHtt ...

  8. 4.7 希尔(shell)排序法

    4-7 ShellSort.c #include <stdio.h> #include "4-1 CreateData.c" //生成随机数的函数 #define AR ...

  9. python的join()函数

    def join(self, iterable): # real signature unknown; restored from __doc__ """ S.join( ...

  10. ThreadPoolExecutor线程池进阶使用

    一.简介 线程池类为 java.util.concurrent.ThreadPoolExecutor,常用构造方法为: ThreadPoolExecutor(int corePoolSize, int ...