[论文理解]Region-Based Convolutional Networks for Accurate Object Detection and Segmentation
Region-Based Convolutional Networks for Accurate Object Detection and Segmentation
概括
这是一篇2016年的目标检测的文章,也是一篇比较经典的目标检测的文章。作者介绍到,现在表现最好的方法非常的复杂,而本文的方法,简单又容易理解,并且不需要大量的训练集。
文章的大致脉络如图。
产生region proposal
文章提到了滑窗的方法,由于滑窗的方法缺点非常明显,就是每次只能检测一个aspect ratio,所以确定object的框的大小很难确定,而且很笨重。而文章中采用的是selective search算法得到region proposal,这个算法是作者对比了多种方法后采取的方法。在实验的时候,作者描述可以用selective search得到大概2000个region proposal。
得到CNN features
这里作者是采用了训练好的网络来提取特征。首先在大训练集上使用使用CNN训练一个用于识别的网络,然后拿这个网络进行微调。具体的做法是,将softmax之前的fc层的输出变为要识别的类别数+1,1是背景,然后再在具体的训练集上进行小数据训练。最终要取的feature是每个region都丢进CNN,然后取softmax之前的fc层是输出值作为feature,这里要注意,输入网络的region的长宽都必须warp到CNN需要的长宽才能进行输入。
此外,作者还提到了 Visualizing Learned Features ,作者直接将某一层的特征视作分类,直接执行activation,得到activation之后的值按照从大到小排序,选取最大的几个,进行非最大抑制,显示得分最高的几个。作者称为“speak for itself”,这种方法可以直接可视化CNN中经过学习之后的内容。如作者可视化了TorontoNet的pool5 层,pool5的feature map是6✖6✖256=9216维的,而每个pool5层又代表原输入图像227✖227pixel的195✖195 pixel的部分,因此可以用来检查某一层是否学的正确。
下图是CNN对COV2007训练集进行微调后训练的pool5的激活后排名前16 的图像。这些层的选择是为了展示网络学习代表性的样本。
丢进SVM训练
从上面我们得到了CNN提取的feature,我们要做的是把这些feature丢进SVM进行训练,这里有多少个类就有多少个分类器负责某一类别的分类。
Bounding-Box Regression
上面训练完了,我们就知道那个region里的东西属于哪个类别,但是我们还需要用Bounding Box把这个类别的object给框起来,所以就需要Bounding-Box Regression.文章采用的是简单的线性回归模型来预测Bounding Box.抱歉公式不会打。只能粘贴论文原文。简单来说就是给定x,y,w,h预测对应的ground truth的x,y,w,h。然后就得到了bounding box。
链接:论文原文
[论文理解]Region-Based Convolutional Networks for Accurate Object Detection and Segmentation的更多相关文章
- [论文理解] Acquisition of Localization Confidence for Accurate Object Detection
Acquisition of Localization Confidence for Accurate Object Detection Intro 目标检测领域的问题有很多,本文的作者捕捉到了这样一 ...
- 论文笔记:Rich feature hierarchies for accurate object detection and semantic segmentation
在上计算机视觉这门课的时候,老师曾经留过一个作业:识别一张 A4 纸上的手写数字.按照传统的做法,这种手写体或者验证码识别的项目,都是按照定位+分割+识别的套路.但凡上网搜一下,就能找到一堆识别的教程 ...
- [论文理解] Learning Efficient Convolutional Networks through Network Slimming
Learning Efficient Convolutional Networks through Network Slimming 简介 这是我看的第一篇模型压缩方面的论文,应该也算比较出名的一篇吧 ...
- 目标检测论文解读1——Rich feature hierarchies for accurate object detection and semantic segmentation
背景 在2012 Imagenet LSVRC比赛中,Alexnet以15.3%的top-5 错误率轻松拔得头筹(第二名top-5错误率为26.2%).由此,ConvNet的潜力受到广泛认可,一炮而红 ...
- [论文理解] An Analysis of Scale Invariance in Object Detection – SNIP
An Analysis of Scale Invariance in Object Detection – SNIP 简介 小目标问题一直是目标检测领域一个比较难解决的问题,因为小目标提供的信息比较少 ...
- 深度学习论文翻译解析(八):Rich feature hierarchies for accurate object detection and semantic segmentation
论文标题:Rich feature hierarchies for accurate object detection and semantic segmentation 标题翻译:丰富的特征层次结构 ...
- VGGNet论文翻译-Very Deep Convolutional Networks for Large-Scale Image Recognition
Very Deep Convolutional Networks for Large-Scale Image Recognition Karen Simonyan[‡] & Andrew Zi ...
- 目标检测论文阅读:Deformable Convolutional Networks
https://blog.csdn.net/qq_21949357/article/details/80538255 这篇论文其实读起来还是比较难懂的,主要是细节部分很需要推敲,尤其是deformab ...
- 图像处理论文详解 | Deformable Convolutional Networks | CVPR | 2017
文章转自同一作者的微信公众号:[机器学习炼丹术] 论文名称:"Deformable Convolutional Networks" 论文链接:https://arxiv.org/a ...
随机推荐
- 第一课、OpenGL绘制直线等等
第一课.OpenGL绘制直线等等 分类: [开发技术]OpenGL 2012-01-18 14:59 5217人阅读 评论(0) 收藏 举报 buffer图形c // // main.c // o ...
- [poj]1050 To the Max dp
Description Given a two-dimensional array of positive and negative integers, a sub-rectangle is any ...
- TensorFlow中tf.ConfigProto()配置Sesion运算方式
博主个人网站:https://chenzhen.online tf.configProto用于在创建Session的时候配置Session的运算方式,即使用GPU运算或CPU运算: 1. tf.Con ...
- VBA for AutoCAD
Download the Microsoft Visual Basic for Applications Module (VBA) 2016 Downloads AutoCAD 2016 VBA mo ...
- base64编码后的pdf文件前端页面展示--pdf.js的应用
最近在整理项目中用到的插件或者使用心得,感觉还是写成博客,能加深新一层的理解. 我先说一下我的需求:由于java后台编译的文件流在手机端加载速度太慢,所以想着可以在前端解析,放在页面展示给用户. 所以 ...
- python的编码问题整理
一.编码和解码 1.编码(encode):将人类可以识别的语言(英文.中文等)转化成机器语言(01串)的过程,用于存储. 2.解码(decode):将机器语言转化成人类可识别的语言的过程,用于显示. ...
- 洛谷P4719 【模板】动态dp
https://www.luogu.org/problemnew/show/P4719 大概就是一条链一条链的处理(“链”在这里指重链),对于每一条链,对于其上每一个点,先算出它自身和所有轻儿子的贡献 ...
- 微服务的.NET Core示例框架
eShopOnContainers 是一个基于微服务的.NET Core示例框架 https://www.cnblogs.com/fengqingyangNo1/p/9438428.html 找到一个 ...
- Storm概念学习系列之并行度与如何提高storm的并行度
不多说,直接上干货! 对于storm来说,并行度的概念非常重要!大家一定要好好理解和消化. storm的并行度,可以简单的理解为多线程. 如何提高storm的并行度? storm程序主要由spout和 ...
- WebStorm技巧-常用快捷键
Ctrl+/ 或 Ctrl+Shift+/ 注释(// 或者/*-*/ ) Shift+F6 重构-重命名 Ctrl+X 删除行 Ctrl+D 复制行 Ctrl+G 查找行 Ctrl+Shift+ ...