17997 Simple Counting

时间限制:2000MS  内存限制:65535K
提交次数:0 通过次数:0

题型: 编程题   语言: 不限定

Description

Ly is crazy about counting . Recently , he got a simple problem , but he had to learn Gaoshu these days .So , he turns to you for help .
You are given a sequence A with n positive integers numbered from 1 to n , and then expected to answer Q queries .
Each queries contains an interval [L,R] , you should find the number of index i which satisfies :
{i | Ai mod (i-L+1) = 0 , L <= i <= R }

where Ai mod (i-L+1) = 0 means that Ai can be divided by (i-L+1) .

输入格式

The first line of the input is an integer T , indicates the number of test cases .
Then T cases followed. For each test case :
The first line contains two integers n, Q .
The second line contains n positive integers A1, A2, …. An .
The next Q line , each line contains two integers L, R. Data range :
1<= T <= 20
1 <= n, Q <= 20000
1<= Ai <= 50000
1<= L <= R <= n

输出格式

For each query, output a single line with an integer indicates the answer expected .

输入样例

2
5 2
1 2 3 4 5
1 5
3 5 6 3
10 7 3 6 24 11
1 3
2 5
5 6

输出样例

5
2
2
3
1

提示

Huge input, scanf is preferred for C/C++.

During first sample ,
for the first query ,A1 mod 1 = 0 , A2 mod 2 = 0 , A3 mod 3 = 0 , A4 mod 4 = 0 ,A5 mod 5 = 0 , so the answer is 5 ;
for the second query , A3 mod 1 = 0 , A4 mod 2 = 0 , A5 mod 3 != 0 , so the answer is 2 .

给定n个数字和m次询问,每次给定区间[L, R],然后问a[L] % 1 == 0?  a[L + 1] % 2 == 0?,统计答案。

思路:考虑固定左端点L, 就是,对于每一个数字a[i],首先我们已经知道他在数组里的位置是i。

那么如果k是他的约数的话。如果真有询问问到它是否%k==0?,那么这个时候它应该从哪里开始这段区间的询问呢?

应该要在[i - k + 1, ]处吧,因为i - L + 1 = k。得到L等于这个。

然后就可以用一个vector[L]来保存,以L为开始的区间询问,那些位置会是得到ans的。然后二分小于等于R的个数就可以了。

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
#define IOS ios::sync_with_stdio(false)
using namespace std;
#define inf (0x3f3f3f3f)
typedef long long int LL; #include <iostream>
#include <sstream>
#include <vector>
#include <set>
#include <map>
#include <queue>
#include <string>
const int maxn = + ;
vector<int>pos[maxn];
void work() {
int n, m;
scanf("%d%d", &n, &m);
for (int i = ; i <= n; ++i) {
pos[i].clear();
}
for (int i = ; i <= n; ++i) {
int x;
scanf("%d", &x);
int end = (int)sqrt(x * 1.0);
for (int j = ; j <= end; ++j) {
if (x % j == ) {
int L = i - j + ;
if (L >= ) {
pos[L].push_back(i);
} else break;
if (x / j == j) continue;
L = i - (x / j) + ;
if (L >= ) {
pos[L].push_back(i);
}
}
}
}
for (int i = ; i <= n; ++i) {
sort(pos[i].begin(), pos[i].end());
}
for (int i = ; i <= m; ++i) {
int L, R;
scanf("%d%d", &L, &R);
int ans = upper_bound(pos[L].begin(), pos[L].end(), R) - pos[L].begin();
printf("%d\n", ans);
}
} int main() {
#ifdef local
freopen("data.txt","r",stdin);
#endif
int t;
scanf("%d", &t);
while (t--) work();
return ;
}

17997 Simple Counting 数学的更多相关文章

  1. Codeforces 911D. Inversion Counting (数学、思维)

    题目链接:Inversion Counting 题意: 定义数列{ai|i=1,2,...,n}的逆序对如下:对于所有的1≤j<i≤n,若ai<aj,则<i,j>为一个逆序对. ...

  2. TOJ 1258 Very Simple Counting

    Description Let f(n) be the number of factors of integer n. Your task is to count the number of i(1 ...

  3. ACM学习历程—HDU5490 Simple Matrix (数学 && 逆元 && 快速幂) (2015合肥网赛07)

    Problem Description As we know, sequence in the form of an=a1+(n−1)d is called arithmetic progressio ...

  4. 「10.8」simple「数学」·walk「树上直径」

    A. Simple 本来以为很难,考场瞎推了推好像会了...... 想起小凯的诱惑,迷?? 首先$n$,$m$,$q$同除$gcd(n,m)$,显然$q$以内的数假如不是$gcd$的倍数,那么一定不能 ...

  5. UVA 11401 - Triangle CountingTriangle Counting 数学

    You are given n rods of length 1,2, . . . , n. You have to pick any 3 of them and build a triangle. ...

  6. [CSP-S模拟测试]:Simple(数学)

    题目描述 对于给定正整数$n,m$,我们称正整数$c$为好的,当且仅当存在非负整数$x,y$,使得$n\times x+m\times y=c$. 现在给出多组数据,对于每组数据,给定$n,m,q$, ...

  7. zoj 3286 Very Simple Counting---统计[1,N]相同因子个数

    Very Simple Counting Time Limit: 1 Second      Memory Limit: 32768 KB Let f(n) be the number of fact ...

  8. 13 Stream Processing Patterns for building Streaming and Realtime Applications

    原文:https://iwringer.wordpress.com/2015/08/03/patterns-for-streaming-realtime-analytics/ Introduction ...

  9. [C5] Andrew Ng - Structuring Machine Learning Projects

    About this Course You will learn how to build a successful machine learning project. If you aspire t ...

随机推荐

  1. FFMPEG more samples than frame size (avcodec_encode_audio2) 的解决方案

    在实际的项目中,从音频设备采集到的音频的类型和编码器类型(aac ,amr)通常是不一致的. 那么我们首先需要做重采样的过程.利用swr_convert 重新采样. 这时候我们可能会遇到另外一个问题. ...

  2. HTML5 Canvas 自定义笔刷

    1. [图片] QQ截图20120715095110.png ​​2. [代码][HTML]代码 <!DOCTYPE html><html lang="en" & ...

  3. BZOJ 1623 [Usaco2008 Open]Cow Cars 奶牛飞车:贪心

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1623 题意: 编号为1到N的N只奶牛正各自驾着车打算在牛德比亚的高速公路上飞驰.高速公路有 ...

  4. uglifyjs2全局混淆

    从git克隆uglifyjs2源码后,进入目录: npm link 编译并安装uglifyjs2成功,就可以直接调用uglifyjs命令了.但是在进行全局混淆时出现了问题,虽然指定了文件topvar. ...

  5. BZOJ_3786_星系探索_splay维护出栈入栈序

    BZOJ_3786_星系探索_splay维护出栈入栈序 Description 物理学家小C的研究正遇到某个瓶颈. 他正在研究的是一个星系,这个星系中有n个星球,其中有一个主星球(方便起见我们默认其为 ...

  6. liunx下解压压缩命令详细介绍

    Linux下的压缩解压缩命令详解及实例 实例:压缩服务器上当前目录的内容为xxx.zip文件 zip -r xxx.zip ./* 解压zip文件到当前目录 unzip filename.zip == ...

  7. vue-router 获得上一级路由以及返回上一级路由的方法

    if (this.$store.state.previousRouter.name) { this.$router.push({name: this.$store.state.previousRout ...

  8. tinymix

    1. tinymix:列出所有的 sound kcontrol 2. tinymix "Capture Volume":读出里面的值 3. tinymix "Captur ...

  9. HDU2602(01背包)

    Bone Collector Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)To ...

  10. Kefa and Watch

    题意: 维护一个长度为n的字符串,两种操作: 1.将 [l,r] 的字符变为 c 2.询问 d 是否为 $S(l,r)$ 的周期 解法: 首先分析如何令 [l,r] 的周期为d,利用循环串的性质得: ...