17997 Simple Counting

时间限制:2000MS  内存限制:65535K
提交次数:0 通过次数:0

题型: 编程题   语言: 不限定

Description

Ly is crazy about counting . Recently , he got a simple problem , but he had to learn Gaoshu these days .So , he turns to you for help .
You are given a sequence A with n positive integers numbered from 1 to n , and then expected to answer Q queries .
Each queries contains an interval [L,R] , you should find the number of index i which satisfies :
{i | Ai mod (i-L+1) = 0 , L <= i <= R }

where Ai mod (i-L+1) = 0 means that Ai can be divided by (i-L+1) .

输入格式

The first line of the input is an integer T , indicates the number of test cases .
Then T cases followed. For each test case :
The first line contains two integers n, Q .
The second line contains n positive integers A1, A2, …. An .
The next Q line , each line contains two integers L, R. Data range :
1<= T <= 20
1 <= n, Q <= 20000
1<= Ai <= 50000
1<= L <= R <= n

输出格式

For each query, output a single line with an integer indicates the answer expected .

输入样例

2
5 2
1 2 3 4 5
1 5
3 5 6 3
10 7 3 6 24 11
1 3
2 5
5 6

输出样例

5
2
2
3
1

提示

Huge input, scanf is preferred for C/C++.

During first sample ,
for the first query ,A1 mod 1 = 0 , A2 mod 2 = 0 , A3 mod 3 = 0 , A4 mod 4 = 0 ,A5 mod 5 = 0 , so the answer is 5 ;
for the second query , A3 mod 1 = 0 , A4 mod 2 = 0 , A5 mod 3 != 0 , so the answer is 2 .

给定n个数字和m次询问,每次给定区间[L, R],然后问a[L] % 1 == 0?  a[L + 1] % 2 == 0?,统计答案。

思路:考虑固定左端点L, 就是,对于每一个数字a[i],首先我们已经知道他在数组里的位置是i。

那么如果k是他的约数的话。如果真有询问问到它是否%k==0?,那么这个时候它应该从哪里开始这段区间的询问呢?

应该要在[i - k + 1, ]处吧,因为i - L + 1 = k。得到L等于这个。

然后就可以用一个vector[L]来保存,以L为开始的区间询问,那些位置会是得到ans的。然后二分小于等于R的个数就可以了。

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
#define IOS ios::sync_with_stdio(false)
using namespace std;
#define inf (0x3f3f3f3f)
typedef long long int LL; #include <iostream>
#include <sstream>
#include <vector>
#include <set>
#include <map>
#include <queue>
#include <string>
const int maxn = + ;
vector<int>pos[maxn];
void work() {
int n, m;
scanf("%d%d", &n, &m);
for (int i = ; i <= n; ++i) {
pos[i].clear();
}
for (int i = ; i <= n; ++i) {
int x;
scanf("%d", &x);
int end = (int)sqrt(x * 1.0);
for (int j = ; j <= end; ++j) {
if (x % j == ) {
int L = i - j + ;
if (L >= ) {
pos[L].push_back(i);
} else break;
if (x / j == j) continue;
L = i - (x / j) + ;
if (L >= ) {
pos[L].push_back(i);
}
}
}
}
for (int i = ; i <= n; ++i) {
sort(pos[i].begin(), pos[i].end());
}
for (int i = ; i <= m; ++i) {
int L, R;
scanf("%d%d", &L, &R);
int ans = upper_bound(pos[L].begin(), pos[L].end(), R) - pos[L].begin();
printf("%d\n", ans);
}
} int main() {
#ifdef local
freopen("data.txt","r",stdin);
#endif
int t;
scanf("%d", &t);
while (t--) work();
return ;
}

17997 Simple Counting 数学的更多相关文章

  1. Codeforces 911D. Inversion Counting (数学、思维)

    题目链接:Inversion Counting 题意: 定义数列{ai|i=1,2,...,n}的逆序对如下:对于所有的1≤j<i≤n,若ai<aj,则<i,j>为一个逆序对. ...

  2. TOJ 1258 Very Simple Counting

    Description Let f(n) be the number of factors of integer n. Your task is to count the number of i(1 ...

  3. ACM学习历程—HDU5490 Simple Matrix (数学 && 逆元 && 快速幂) (2015合肥网赛07)

    Problem Description As we know, sequence in the form of an=a1+(n−1)d is called arithmetic progressio ...

  4. 「10.8」simple「数学」·walk「树上直径」

    A. Simple 本来以为很难,考场瞎推了推好像会了...... 想起小凯的诱惑,迷?? 首先$n$,$m$,$q$同除$gcd(n,m)$,显然$q$以内的数假如不是$gcd$的倍数,那么一定不能 ...

  5. UVA 11401 - Triangle CountingTriangle Counting 数学

    You are given n rods of length 1,2, . . . , n. You have to pick any 3 of them and build a triangle. ...

  6. [CSP-S模拟测试]:Simple(数学)

    题目描述 对于给定正整数$n,m$,我们称正整数$c$为好的,当且仅当存在非负整数$x,y$,使得$n\times x+m\times y=c$. 现在给出多组数据,对于每组数据,给定$n,m,q$, ...

  7. zoj 3286 Very Simple Counting---统计[1,N]相同因子个数

    Very Simple Counting Time Limit: 1 Second      Memory Limit: 32768 KB Let f(n) be the number of fact ...

  8. 13 Stream Processing Patterns for building Streaming and Realtime Applications

    原文:https://iwringer.wordpress.com/2015/08/03/patterns-for-streaming-realtime-analytics/ Introduction ...

  9. [C5] Andrew Ng - Structuring Machine Learning Projects

    About this Course You will learn how to build a successful machine learning project. If you aspire t ...

随机推荐

  1. llala js弹出层 颜色渐变

    网址:http://bbs.csdn.net/topics/370254842

  2. Java网络编程InetAddress类

    InetAddress用来代表IP地址.一个InetAdress的对象就代表着一个IP地址, getByName(String host):在给定主机名的情况下确定主机的 IP 地址,主机名可以是机器 ...

  3. table内 获取同一行 其他列的value

    table内  获取同一行 其他列的value function move(obj,ud){ var code = document.getElementById("reportName&q ...

  4. 光流 LK 金字塔

    文章转载自:https://blog.csdn.net/sgfmby1994/article/details/68489944 光流是图像亮度的运动信息描述,这种运动模式指的是由一个观察者(比如摄像头 ...

  5. sparkContext之一:sparkContext的初始化分析

    Spark源码学习:sparkContext的初始化分析 spark可以运行在本地模式local下,可以运行在yarn和standalone模式下,但是本地程序是通过什么渠道和这些集群交互的呢?那就是 ...

  6. Jasper:API / API 策略和最佳做法

    ylbtech-Jasper:API / API 策略和最佳做法 1.返回顶部 1. API 策略和最佳做法 Cisco Jasper 已经建立了一项 API 公平使用策略,确保所有 Control  ...

  7. SQL repeat()函数

    转自:https://www.yiibai.com/sql/sql-repeat-function.html REPEAT(str,count) 返回一个字符串组成的字符串STR重复的次数.如果计数小 ...

  8. vscode实现列编辑

    ctrl + shift + 左键选择要编辑的列 好用,再也不用使用\n替换了

  9. mina框架之---服务端NioSocketAcceptor的学习

    接上一讲对mina的简单应用和对mina服务端和客户端中几个重要的技术知识点的理解后,今天着重对mina服务端的NioSocketAcceptor 进行学习. 说这个玩意之前,先整体上看一下在mina ...

  10. ORBslam总结

    ORBSLAM的优缺点:优点:回环检测做得好,基本上只要见到过的场景都能找回来.采用一种更鲁棒的关键帧和三维点的选择机制——先用宽松的判断条件尽可能及时地加入新的关键帧和三维点, 以保证后续帧的鲁棒跟 ...