17997 Simple Counting 数学
17997 Simple Counting
时间限制:2000MS 内存限制:65535K
提交次数:0 通过次数:0
题型: 编程题 语言: 不限定
Description
Ly is crazy about counting . Recently , he got a simple problem , but he had to learn Gaoshu these days .So , he turns to you for help .
You are given a sequence A with n positive integers numbered from 1 to n , and then expected to answer Q queries .
Each queries contains an interval [L,R] , you should find the number of index i which satisfies :
{i | Ai mod (i-L+1) = 0 , L <= i <= R }
where Ai mod (i-L+1) = 0 means that Ai can be divided by (i-L+1) .
输入格式
The first line of the input is an integer T , indicates the number of test cases .
Then T cases followed. For each test case :
The first line contains two integers n, Q .
The second line contains n positive integers A1, A2, …. An .
The next Q line , each line contains two integers L, R. Data range :
1<= T <= 20
1 <= n, Q <= 20000
1<= Ai <= 50000
1<= L <= R <= n
输出格式
For each query, output a single line with an integer indicates the answer expected .
输入样例
2
5 2
1 2 3 4 5
1 5
3 5 6 3
10 7 3 6 24 11
1 3
2 5
5 6
输出样例
5
2
2
3
1
提示
Huge input, scanf is preferred for C/C++. During first sample ,
for the first query ,A1 mod 1 = 0 , A2 mod 2 = 0 , A3 mod 3 = 0 , A4 mod 4 = 0 ,A5 mod 5 = 0 , so the answer is 5 ;
for the second query , A3 mod 1 = 0 , A4 mod 2 = 0 , A5 mod 3 != 0 , so the answer is 2 .
给定n个数字和m次询问,每次给定区间[L, R],然后问a[L] % 1 == 0? a[L + 1] % 2 == 0?,统计答案。
思路:考虑固定左端点L, 就是,对于每一个数字a[i],首先我们已经知道他在数组里的位置是i。
那么如果k是他的约数的话。如果真有询问问到它是否%k==0?,那么这个时候它应该从哪里开始这段区间的询问呢?
应该要在[i - k + 1, ]处吧,因为i - L + 1 = k。得到L等于这个。
然后就可以用一个vector[L]来保存,以L为开始的区间询问,那些位置会是得到ans的。然后二分小于等于R的个数就可以了。
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
#define IOS ios::sync_with_stdio(false)
using namespace std;
#define inf (0x3f3f3f3f)
typedef long long int LL; #include <iostream>
#include <sstream>
#include <vector>
#include <set>
#include <map>
#include <queue>
#include <string>
const int maxn = + ;
vector<int>pos[maxn];
void work() {
int n, m;
scanf("%d%d", &n, &m);
for (int i = ; i <= n; ++i) {
pos[i].clear();
}
for (int i = ; i <= n; ++i) {
int x;
scanf("%d", &x);
int end = (int)sqrt(x * 1.0);
for (int j = ; j <= end; ++j) {
if (x % j == ) {
int L = i - j + ;
if (L >= ) {
pos[L].push_back(i);
} else break;
if (x / j == j) continue;
L = i - (x / j) + ;
if (L >= ) {
pos[L].push_back(i);
}
}
}
}
for (int i = ; i <= n; ++i) {
sort(pos[i].begin(), pos[i].end());
}
for (int i = ; i <= m; ++i) {
int L, R;
scanf("%d%d", &L, &R);
int ans = upper_bound(pos[L].begin(), pos[L].end(), R) - pos[L].begin();
printf("%d\n", ans);
}
} int main() {
#ifdef local
freopen("data.txt","r",stdin);
#endif
int t;
scanf("%d", &t);
while (t--) work();
return ;
}
17997 Simple Counting 数学的更多相关文章
- Codeforces 911D. Inversion Counting (数学、思维)
题目链接:Inversion Counting 题意: 定义数列{ai|i=1,2,...,n}的逆序对如下:对于所有的1≤j<i≤n,若ai<aj,则<i,j>为一个逆序对. ...
- TOJ 1258 Very Simple Counting
Description Let f(n) be the number of factors of integer n. Your task is to count the number of i(1 ...
- ACM学习历程—HDU5490 Simple Matrix (数学 && 逆元 && 快速幂) (2015合肥网赛07)
Problem Description As we know, sequence in the form of an=a1+(n−1)d is called arithmetic progressio ...
- 「10.8」simple「数学」·walk「树上直径」
A. Simple 本来以为很难,考场瞎推了推好像会了...... 想起小凯的诱惑,迷?? 首先$n$,$m$,$q$同除$gcd(n,m)$,显然$q$以内的数假如不是$gcd$的倍数,那么一定不能 ...
- UVA 11401 - Triangle CountingTriangle Counting 数学
You are given n rods of length 1,2, . . . , n. You have to pick any 3 of them and build a triangle. ...
- [CSP-S模拟测试]:Simple(数学)
题目描述 对于给定正整数$n,m$,我们称正整数$c$为好的,当且仅当存在非负整数$x,y$,使得$n\times x+m\times y=c$. 现在给出多组数据,对于每组数据,给定$n,m,q$, ...
- zoj 3286 Very Simple Counting---统计[1,N]相同因子个数
Very Simple Counting Time Limit: 1 Second Memory Limit: 32768 KB Let f(n) be the number of fact ...
- 13 Stream Processing Patterns for building Streaming and Realtime Applications
原文:https://iwringer.wordpress.com/2015/08/03/patterns-for-streaming-realtime-analytics/ Introduction ...
- [C5] Andrew Ng - Structuring Machine Learning Projects
About this Course You will learn how to build a successful machine learning project. If you aspire t ...
随机推荐
- llala js弹出层 颜色渐变
网址:http://bbs.csdn.net/topics/370254842
- Java网络编程InetAddress类
InetAddress用来代表IP地址.一个InetAdress的对象就代表着一个IP地址, getByName(String host):在给定主机名的情况下确定主机的 IP 地址,主机名可以是机器 ...
- table内 获取同一行 其他列的value
table内 获取同一行 其他列的value function move(obj,ud){ var code = document.getElementById("reportName&q ...
- 光流 LK 金字塔
文章转载自:https://blog.csdn.net/sgfmby1994/article/details/68489944 光流是图像亮度的运动信息描述,这种运动模式指的是由一个观察者(比如摄像头 ...
- sparkContext之一:sparkContext的初始化分析
Spark源码学习:sparkContext的初始化分析 spark可以运行在本地模式local下,可以运行在yarn和standalone模式下,但是本地程序是通过什么渠道和这些集群交互的呢?那就是 ...
- Jasper:API / API 策略和最佳做法
ylbtech-Jasper:API / API 策略和最佳做法 1.返回顶部 1. API 策略和最佳做法 Cisco Jasper 已经建立了一项 API 公平使用策略,确保所有 Control ...
- SQL repeat()函数
转自:https://www.yiibai.com/sql/sql-repeat-function.html REPEAT(str,count) 返回一个字符串组成的字符串STR重复的次数.如果计数小 ...
- vscode实现列编辑
ctrl + shift + 左键选择要编辑的列 好用,再也不用使用\n替换了
- mina框架之---服务端NioSocketAcceptor的学习
接上一讲对mina的简单应用和对mina服务端和客户端中几个重要的技术知识点的理解后,今天着重对mina服务端的NioSocketAcceptor 进行学习. 说这个玩意之前,先整体上看一下在mina ...
- ORBslam总结
ORBSLAM的优缺点:优点:回环检测做得好,基本上只要见到过的场景都能找回来.采用一种更鲁棒的关键帧和三维点的选择机制——先用宽松的判断条件尽可能及时地加入新的关键帧和三维点, 以保证后续帧的鲁棒跟 ...