【bzoj3295】[Cqoi2011]动态逆序对 线段树套SBT
题目描述
输入
输出
样例输入
5 4
1
5
3
4
2
5
1
4
2
样例输出
5
2
2
1
题解
个人不喜欢CDQ分治,所以写了个线段树套SBT
想法很自然,删除某个数,减少的贡献为它左边比它大的数的个数+它右边比它小的数的个数。外层维护区间线段树,内层维护平衡树(不用权值线段树因为卡空间),查找时找到对应区间在平衡树中查询;删除时把外层从根到对应叶子的每个节点在平衡树中删除掉。
然而写到一半CQzhangyu告诉我本题卡树套树,看了下Discuss发现还真是 = =。
于是赶紧把Treap换成SBT,然而还是TLE。
没办法,再把数组版改成结构体版,最终AC。
然而跑得还是比CDQ分治慢了5倍左右= =
#include <cstdio>
#include <cstdlib>
#include <algorithm>
#define N 100010
#define lson l , mid , x << 1
#define rson mid + 1 , r , x << 1 | 1
using namespace std;
struct data
{
int l , r , w , si;
}a[N << 5];
int pos[N] , v[N] , root[N << 2] , tot;
inline int read()
{
int ret = 0; char ch = getchar();
while(ch < '0' || ch > '9') ch = getchar();
while(ch >= '0' && ch <= '9') ret = (ret << 3) + (ret << 1) + ch - '0' , ch = getchar();
return ret;
}
void zig(int &k)
{
int t = a[k].l;
a[k].l = a[t].r , a[t].r = k , a[t].si = a[k].si , a[k].si = a[a[k].l].si + a[a[k].r].si + 1;
k = t;
}
void zag(int &k)
{
int t = a[k].r;
a[k].r = a[t].l , a[t].l = k , a[t].si = a[k].si , a[k].si = a[a[k].l].si + a[a[k].r].si + 1;
k = t;
}
void maintain(int &k , bool flag)
{
if(!flag)
{
if(a[a[a[k].l].l].si > a[a[k].r].si) zig(k);
else if(a[a[a[k].l].r].si > a[a[k].r].si) zag(a[k].l) , zig(k);
else return;
}
else
{
if(a[a[a[k].r].r].si > a[a[k].l].si) zag(k);
else if(a[a[a[k].r].l].si > a[a[k].l].si) zig(a[k].r) , zag(k);
else return;
}
maintain(a[k].l , false) , maintain(a[k].r , true);
maintain(k , false) , maintain(k , true);
}
void add(int &k , int x)
{
if(!k) k = ++tot , a[k].w = x , a[k].si = 1;
else
{
a[k].si ++ ;
if(x < a[k].w) add(a[k].l , x);
else add(a[k].r , x);
maintain(k , x >= a[k].w);
}
}
void del(int &k , int x)
{
a[k].si -- ;
if(x < a[k].w) del(a[k].l , x);
else if(x > a[k].w) del(a[k].r , x);
else
{
if(!a[k].l || !a[k].r) k = a[k].l + a[k].r;
else
{
int t = a[k].r , last = k;
while(a[t].l) a[t].si -- , last = t , t = a[t].l;
if(t == a[last].l) a[last].l = a[t].r;
else a[last].r = a[t].r;
a[t].l = a[k].l , a[t].r = a[k].r , a[t].si = a[k].si , k = t;
}
}
}
int findl(int k , int x)
{
if(!k) return 0;
else if(x <= a[k].w) return findl(a[k].l , x);
else return findl(a[k].r , x) + a[a[k].l].si + 1;
}
int findr(int k , int x)
{
if(!k) return 0;
else if(x >= a[k].w) return findr(a[k].r , x);
else return findr(a[k].l , x) + a[a[k].r].si + 1;
}
void insert(int p , int a , int l , int r , int x)
{
add(root[x] , a);
if(l == r) return;
int mid = (l + r) >> 1;
if(p <= mid) insert(p , a , lson);
else insert(p , a , rson);
}
void erase(int p , int a , int l , int r , int x)
{
del(root[x] , a);
if(l == r) return;
int mid = (l + r) >> 1;
if(p <= mid) erase(p , a , lson);
else erase(p , a , rson);
}
int queryl(int b , int e , int a , int l , int r , int x)
{
if(b <= l && r <= e) return findl(root[x] , a);
int mid = (l + r) >> 1 , ans = 0;
if(b <= mid) ans += queryl(b , e , a , lson);
if(e > mid) ans += queryl(b , e , a , rson);
return ans;
}
int queryr(int b , int e , int a , int l , int r , int x)
{
if(b <= l && r <= e) return findr(root[x] , a);
int mid = (l + r) >> 1 , ans = 0;
if(b <= mid) ans += queryr(b , e , a , lson);
if(e > mid) ans += queryr(b , e , a , rson);
return ans;
}
int main()
{
int n , m , i , x;
long long ans = 0;
n = read() , m = read();
for(i = 1 ; i <= n ; i ++ )
v[i] = read() , insert(i , v[i] , 1 , n , 1) , ans += queryr(1 , i , v[i] , 1 , n , 1) , pos[v[i]] = i;
while(m -- )
{
x = read() , printf("%lld\n" , ans);
ans -= queryr(1 , pos[x] , x , 1 , n , 1) + queryl(pos[x] , n , x , 1 , n , 1);
erase(pos[x] , x , 1 , n , 1);
}
return 0;
}
【bzoj3295】[Cqoi2011]动态逆序对 线段树套SBT的更多相关文章
- bzoj3295: [Cqoi2011]动态逆序对(树套树)
#include <iostream> #include <cstdio> #include <cstring> #include <cmath> #i ...
- BZOJ3295: [Cqoi2011]动态逆序对(树状数组套主席树)
3295: [Cqoi2011]动态逆序对 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 7465 Solved: 2662[Submit][Sta ...
- bzoj3295 [Cqoi2011]动态逆序对 cdq+树状数组
[bzoj3295][Cqoi2011]动态逆序对 2014年6月17日4,7954 Description 对于序列A,它的逆序对数定义为满足i<j,且Ai>Aj的数对(i,j)的个数. ...
- BZOJ3295 [Cqoi2011]动态逆序对 分治 树状数组
原文链接http://www.cnblogs.com/zhouzhendong/p/8678185.html 题目传送门 - BZOJ3295 题意 对于序列$A$,它的逆序对数定义为满足$i< ...
- bzoj 3295: [Cqoi2011]动态逆序对(树套树 or CDQ分治)
Description 对于序列A,它的逆序对数定义为满足i<j,且Ai>Aj的数对(i,j)的个数.给1到n的一个排列,按照某种顺序依次删除m个元素,你的任务是在每次删除一个元素之前统计 ...
- P3157 [CQOI2011]动态逆序对(树状数组套线段树)
P3157 [CQOI2011]动态逆序对 树状数组套线段树 静态逆序对咋做?树状数组(别管归并QWQ) 然鹅动态的咋做? 我们考虑每次删除一个元素. 减去的就是与这个元素有关的逆序对数,介个可以预处 ...
- bzoj3295[Cqoi2011]动态逆序对 树套树
3295: [Cqoi2011]动态逆序对 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 5987 Solved: 2080[Submit][Sta ...
- [BZOJ3295][Cqoi2011]动态逆序对 CDQ分治&树套树
3295: [Cqoi2011]动态逆序对 Time Limit: 10 Sec Memory Limit: 128 MB Description 对于序列A,它的逆序对数定义为满足i<j,且 ...
- 2018.07.01 BZOJ3295: [Cqoi2011]动态逆序对(带修主席树)
3295: [Cqoi2011]动态逆序对 **Time Limit: 10 Sec Memory Limit: 128 MB Description 对于序列A,它的逆序对数定义为满足i<j& ...
随机推荐
- GC Root总结
为什么80%的码农都做不了架构师?>>> JVM根据GC Roots算法判定一个对象需要被回收,GC Roots一般在JVM的栈区域里产生. GC Roots原理 GC Roots基 ...
- ETL工具--DataX3.0实战
DataX是一个在异构的数据库/文件系统之间高速交换数据的工具,实现了在任意的数据处理系统(RDBMS/Hdfs/Local filesystem)之间的数据交换,由淘宝数据平台部门完成. DataX ...
- javaweb基础(29)_EL表达式
一.EL表达式简介 EL 全名为Expression Language.EL主要作用: 1.获取数据 EL表达式主要用于替换JSP页面中的脚本表达式,以从各种类型的web域 中检索java对象.获取数 ...
- 转:Python字典与集合操作总结
转自:http://blog.csdn.net/business122/article/details/7537014 一.创建字典 方法①: >>> dict1 = {} > ...
- common-fileupload组件实现java文件上传和下载
简介:文件上传和下载是java web中常见的操作,文件上传主要是将文件通过IO流传放到服务器的某一个特定的文件夹下,而文件下载则是与文件上传相反,将文件从服务器的特定的文件夹下的文件通过IO流下载到 ...
- Oracle 数字处理函数
数字处理函数 ① mod(number1,number2) 取余数的函数,比如mod(10,3) = 10/3 = 1. ② round(number,num_ditigs) .trunk(numbe ...
- 如何使用工具进行C/C++的内存泄漏检测
系统编程中一个重要的方面就是有效地处理与内存相关的问题.你的工作越接近系统,你就需要面对越多的内存问题.有时这些问题非常琐碎,而更多时候它会演变成一个调试内存问题的恶梦.所以,在实践中会用到很多工具来 ...
- 32-1题:不分行从上到下打印二叉树/BFS/deque/queue
题目 从上往下打印出二叉树的每个节点,同层节点从左至右打印. 考点 1.广度优先遍历 2.binary tree 3.queue 4.deque 思路 按层打印:8.6.10.5.7.9.11 用ST ...
- 【Python学习之九】asyncio—异步IO
asyncio 这是python3.4引入的标准库,直接内置对异步IO的支持.asyncio的编程模型就是一个消息循环.从asyncio模块中直接获取一个EventLoop的引用,然后把需要执行的协程 ...
- jupyter notebook(三)——IOPub_data_rate_limit报错
一.问题 运行jupyter notebook,然后运行python代码,读取文件处理时,会报错.发现时IO读取时错误.应该是IO速率问题. 下面是问题报错: IOPub data rate exce ...