K-均值聚类算法

聚类是一种无监督的学习算法,它将相似的数据归纳到同一簇中。K-均值是因为它可以按照k个不同的簇来分类,并且不同的簇中心采用簇中所含的均值计算而成。

K-均值算法

算法思想

K-均值是把数据集按照k个簇分类,其中k是用户给定的,其中每个簇是通过质心来计算簇的中心点。

主要步骤:

  • 随机确定k个初始点作为质心
  • 对数据集中的每个数据点找到距离最近的簇
  • 对于每一个簇,计算簇中所有点的均值并将均值作为质心
  • 重复步骤2,直到任意一个点的簇分配结果不变

具体实现

from numpy import *
import matplotlib
import matplotlib.pyplot as plt def loadDataSet(fileName): #general function to parse tab -delimited floats
dataMat = [] #assume last column is target value
fr = open(fileName)
for line in fr.readlines():
curLine = line.strip().split('\t')
fltLine = map(float,curLine) #map all elements to float()
dataMat.append(fltLine)
return dataMat def distEclud(vecA, vecB):
return sqrt(sum(power(vecA - vecB, 2))) #la.norm(vecA-vecB) def randCent(dataSet, k):
n = shape(dataSet)[1]
centroids = mat(zeros((k,n)))#create centroid mat
for j in range(n):#create random cluster centers, within bounds of each dimension
minJ = min(dataSet[:,j])
rangeJ = float(max(dataSet[:,j]) - minJ)
centroids[:,j] = mat(minJ + rangeJ * random.rand(k,1))
return centroids def kMeans(dataSet, k, distMeas=distEclud, createCent=randCent):
m = shape(dataSet)[0]
clusterAssment = mat(zeros((m,2)))#create mat to assign data points
#to a centroid, also holds SE of each point
centroids = createCent(dataSet, k)
clusterChanged = True
while clusterChanged:
clusterChanged = False
for i in range(m):#for each data point assign it to the closest centroid
minDist = inf; minIndex = -1
for j in range(k):
distJI = distMeas(centroids[j,:],dataSet[i,:])
if distJI < minDist:
minDist = distJI; minIndex = j
if clusterAssment[i,0] != minIndex: clusterChanged = True
clusterAssment[i,:] = minIndex,minDist**2
for cent in range(k):#recalculate centroids
ptsInClust = dataSet[nonzero(clusterAssment[:,0].A==cent)[0]]#get all the point in this cluster
centroids[cent,:] = mean(ptsInClust, axis=0) #assign centroid to mean
print ptsInClust
print mean(ptsInClust, axis=0)
return
return centroids, clusterAssment def clusterClubs(numClust=5):
datList = []
for line in open('places.txt').readlines():
lineArr = line.split('\t')
datList.append([float(lineArr[4]), float(lineArr[3])])
datMat = mat(datList)
myCentroids, clustAssing = biKmeans(datMat, numClust, distMeas=distSLC)
fig = plt.figure()
rect=[0.1,0.1,0.8,0.8]
scatterMarkers=['s', 'o', '^', '8', 'p', \
'd', 'v', 'h', '>', '<']
axprops = dict(xticks=[], yticks=[])
ax0=fig.add_axes(rect, label='ax0', **axprops)
imgP = plt.imread('Portland.png')
ax0.imshow(imgP)
ax1=fig.add_axes(rect, label='ax1', frameon=False)
for i in range(numClust):
ptsInCurrCluster = datMat[nonzero(clustAssing[:,0].A==i)[0],:]
markerStyle = scatterMarkers[i % len(scatterMarkers)]
ax1.scatter(ptsInCurrCluster[:,0].flatten().A[0], ptsInCurrCluster[:,1].flatten().A[0], marker=markerStyle, s=90)
ax1.scatter(myCentroids[:,0].flatten().A[0], myCentroids[:,1].flatten().A[0], marker='+', s=300)
plt.show()

结果

算法收敛

设目标函数为

$$J(c, \mu) = \sum _{i=1}^m (x_i - \mu_{c_{(i)}})^2$$

Kmeans算法是将J调整到最小,每次调整质心,J值也会减小,同时c和$\mu$也会收敛。由于该函数是一个非凸函数,所以不能保证得到全局最优,智能确保局部最优解。

二分K均值算法

为了克服K均值算法收敛于局部最小值的问题,提出了二分K均值算法。

算法思想

该算法首先将所有点作为一个簇,然后将该簇一分为2,之后选择其中一个簇继续进行划分,划分规则是按照最大化SSE(目标函数)的值。

主要步骤:

  • 将所有点看成一个簇
  • 计算每一个簇的总误差
  • 在给定的簇上进行K均值聚类,计算将簇一分为二的总误差
  • 选择使得误差最小的那个簇进行再次划分
  • 重复步骤2,直到簇的个数满足要求

具体实现

def biKMeans(dataSet, k, distMeans=distEclud):
m, n = shape(dataSet)
clusterAssment = mat(zeros((m, 2))) # init all data for index 0
centroid = mean(dataSet, axis=0).tolist()
centList = [centroid]
for i in range(m):
clusterAssment[i, 1] = distMeans(mat(centroid), dataSet[i, :]) ** 2
while len(centList) < k:
lowestSSE = inf
for i in range(len(centList)):
cluster = dataSet[nonzero(clusterAssment[:, 0].A == i)[0], :] # get the clust data of i
centroidMat, splitCluster = kMeans(cluster, 2, distMeans)
sseSplit = sum(splitCluster[:, 1]) #all sse
sseNotSplit = sum(clusterAssment[nonzero(clusterAssment[:, 0].A != i)[0], 1]) # error sse
#print sseSplit, sseNotSplit
if sseSplit + sseNotSplit < lowestSSE:
bestCentToSplit = i
bestNewCent = centroidMat
bestClust = splitCluster.copy()
lowerSEE = sseSplit + sseNotSplit
print bestClust
bestClust[nonzero(bestClust[:, 0].A == 1)[0], 0] = len(centList)
bestClust[nonzero(bestClust[:, 0].A == 0)[0], 0] = bestCentToSplit
print bestClust
print 'the bestCentToSplit is: ',bestCentToSplit
print 'the len of bestClustAss is: ', len(bestClust)
centList[bestCentToSplit] = bestNewCent[0, :].tolist()[0]
centList.append(bestNewCent[1, :].tolist()[0])
print clusterAssment
clusterAssment[nonzero(clusterAssment[:, 0].A == bestCentToSplit)[0], :] = bestClust
print clusterAssment
return mat(centList), clusterAssment

结果

K-均值聚类算法的更多相关文章

  1. k均值聚类算法原理和(TensorFlow)实现

    顾名思义,k均值聚类是一种对数据进行聚类的技术,即将数据分割成指定数量的几个类,揭示数据的内在性质及规律. 我们知道,在机器学习中,有三种不同的学习模式:监督学习.无监督学习和强化学习: 监督学习,也 ...

  2. K均值聚类算法

    k均值聚类算法(k-means clustering algorithm)是一种迭代求解的聚类分析算法,其步骤是随机选取K个对象作为初始的聚类中心,然后计算每个对象与各个种子聚类中心之间的距离,把每个 ...

  3. 机器学习实战---K均值聚类算法

    一:一般K均值聚类算法实现 (一)导入数据 import numpy as np import matplotlib.pyplot as plt def loadDataSet(filename): ...

  4. 基于改进人工蜂群算法的K均值聚类算法(附MATLAB版源代码)

    其实一直以来也没有准备在园子里发这样的文章,相对来说,算法改进放在园子里还是会稍稍显得格格不入.但是最近邮箱收到的几封邮件让我觉得有必要通过我的博客把过去做过的东西分享出去更给更多需要的人.从论文刊登 ...

  5. K均值聚类算法的MATLAB实现

    1.K-均值聚类法的概述    之前在参加数学建模的过程中用到过这种聚类方法,但是当时只是简单知道了在matlab中如何调用工具箱进行聚类,并不是特别清楚它的原理.最近因为在学模式识别,又重新接触了这 ...

  6. 聚类之K均值聚类和EM算法

    这篇博客整理K均值聚类的内容,包括: 1.K均值聚类的原理: 2.初始类中心的选择和类别数K的确定: 3.K均值聚类和EM算法.高斯混合模型的关系. 一.K均值聚类的原理 K均值聚类(K-means) ...

  7. 机器学习实战5:k-means聚类:二分k均值聚类+地理位置聚簇实例

    k-均值聚类是非监督学习的一种,输入必须指定聚簇中心个数k.k均值是基于相似度的聚类,为没有标签的一簇实例分为一类. 一 经典的k-均值聚类 思路: 1 随机创建k个质心(k必须指定,二维的很容易确定 ...

  8. 机器学习理论与实战(十)K均值聚类和二分K均值聚类

    接下来就要说下无监督机器学习方法,所谓无监督机器学习前面也说过,就是没有标签的情况,对样本数据进行聚类分析.关联性分析等.主要包括K均值聚类(K-means clustering)和关联分析,这两大类 ...

  9. 机器学习之K均值聚类

      聚类的核心概念是相似度或距离,有很多相似度或距离的方法,比如欧式距离.马氏距离.相关系数.余弦定理.层次聚类和K均值聚类等 1. K均值聚类思想   K均值聚类的基本思想是,通过迭代的方法寻找K个 ...

  10. 100天搞定机器学习|day44 k均值聚类数学推导与python实现

    [如何正确使用「K均值聚类」? 1.k均值聚类模型 给定样本,每个样本都是m为特征向量,模型目标是将n个样本分到k个不停的类或簇中,每个样本到其所属类的中心的距离最小,每个样本只能属于一个类.用C表示 ...

随机推荐

  1. windows 物理内存获取

    由于我一般使用的虚拟内存, 有时我们需要获取到物理内存中的数据(也就是内存条中的真实数据), 按理说是很简单,打开物理内存,读取就可以了.但似乎没这么简单: #include "window ...

  2. httpclient 无信任证书使用https

    1.当不需要使用任何证书访问https网页时,只需配置信任任何证书 HttpClient http = new HttpClient(); String url = "https://pay ...

  3. 《UML大战需求分析》阅读随笔(五)

    在处理复杂事物的时候,用到一种基本手段就是抽象.抽象的目的是区别事物之间的本质和不同,面向对象编程(OOP)的实质就是利用 类和对象来建立抽象模型. 类表示对象的类别,是创建对象的蓝本.建立一个事物的 ...

  4. iOS应用九宫格算法

      1.框框横向间隔为:( "界面的总宽度"-"界面每行的控件的宽度" * "每行要现实的列数(这里是3)") / ("列数 + ...

  5. JavaScript(二) DOM

    当网页被加载时,浏览器会创建页面的文档对象模型(Document Object Model)通过 HTML DOM,可访问 JavaScript HTML 文档的所有元素. 通过 id 查找 HTML ...

  6. 在Myeclipse中提交代码到GitHub中

    这需要借助插件Egit,首先就是先下载该插件了,可以再eclipse中下载,也可以在外面下载,下载就不说了.下载地址git://github.com/houyongchao/plugin-Egit.g ...

  7. Spring Cloud 统一配置

    http://blog.csdn.net/catoop/article/details/50955949

  8. volatile不能保证原子性

    1.看图自己体会 2.体会不了就给你个小程序 package cs.util; public class VolatileDemo { private volatile int count =0; p ...

  9. POJ 1979 题解

    Red and Black Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 31722   Accepted: 17298 D ...

  10. 第二章 Matlab面向对象编程基础

    DeepLab是一款基于Matlab面向对象编程的深度学习工具箱,所以了解Matlab面向对象编程的特点是必要的.笔者在做Matlab面向对象编程的时候发现无论是互联网上还是书店里卖的各式Matlab ...