讲解:http://www.cnblogs.com/poorpool/p/8760748.html

递归版FFT

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cstdlib>
#include <cmath>
using namespace std;
const int MAXN = 4000005;
const double PI = acos(-1);
int init() {
int rv = 0, fh = 1;
char c = getchar();
while(c < '0' || c > '9') {
if(c == '-') fh = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
rv = (rv<<1) + (rv<<3) + c - '0';
c = getchar();
}
return rv * fh;
}
struct Complex{
double x, y;
Complex (double xx = 0.0, double yy = 0.0) {
x = xx; y = yy;
}
Complex operator + (const Complex &u) const{
return Complex(x + u.x, y + u.y);
}
Complex operator - (const Complex &u) const{
return Complex(x - u.x, y - u.y);
}
Complex operator * (const Complex &u) const{
return Complex(x * u.x - y * u.y, x * u.y + y * u.x);
}
}a[MAXN], b[MAXN], buf[MAXN];
int n, m;
void fft(Complex a[], int lim, int opt) {
if(lim == 1) return;
int tmp = lim / 2;
for(int i = 0; i < tmp; i++) {
buf[i] = a[i * 2];
buf[tmp + i] = a[i * 2 + 1];
}
for(int i = 0; i < lim; i++) {
a[i] = buf[i];
}
fft(a, tmp, opt);
fft(a + tmp, tmp, opt);
Complex wn = Complex(cos(PI * 2.0 / lim), opt * sin(PI * 2.0 / lim)), w = Complex(1.0, 0.0);
for(int i = 0; i < tmp; i++) {
buf[i] = a[i] + w * a[i + tmp];
buf[i + tmp] = a[i] - w * a[i + tmp];
w = w * wn;
}
for(int i = 0; i < lim; i++) {
a[i] = buf[i];
}
}
int main() {
n = init(); m = init();
for(int i = 0; i <= n; i++) a[i].x = init();
for(int i = 0; i <= m; i++) b[i].x = init();
int lim = 1;
while(lim <= n + m) lim <<= 1;
fft(a, lim, 1);
fft(b, lim, 1);
for(int i = 0; i <= lim; i++) {
a[i] = a[i] * b[i];
}
fft(a, lim, -1);
for(int i = 0; i <= n + m; i++) {
printf("%d ", (int)(a[i].x / lim + 0.5));
}
printf("\n");
return 0;
}

迭代版FFT

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <algorithm>
using namespace std;
const int MAXN = 4000005;
const double PI = acos(-1);
int init() {
int rv = 0, fh = 1;
char c = getchar();
while(c < '0' || c > '9') {
if(c == '-') fh = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
rv = (rv<<1) + (rv<<3) + c - '0';
c = getchar();
}
return rv * fh;
}
struct Complex{
double x, y;
Complex (double xx = 0.0, double yy = 0.0) {
x = xx; y = yy;
}
Complex operator + (const Complex &u) const {
return Complex(x + u.x, y + u.y);
}
Complex operator - (const Complex &u) const{
return Complex(x - u.x, y - u.y);
}
Complex operator * (const Complex &u) const{
return Complex(x * u.x - y * u.y, x * u.y + y * u.x);
}
}a[MAXN], b[MAXN], buf[MAXN];
int n, m, rev[MAXN], lim, limcnt;
void fft(Complex a[], int opt) {
for(int i = 0; i <= lim; i++) {
if(i < rev[i]) swap(a[i], a[rev[i]]);
}
for(int mid = 1; mid < lim; mid <<= 1) {
Complex wn = Complex(cos(PI / mid), opt * sin(PI / mid));
for(int R = mid << 1, j = 0; j < lim; j += R) {
Complex w = Complex(1.0, 0.0);
for(int k = 0; k < mid; k++) {
Complex x = a[j + k], y = w * a[j + mid + k];
a[j + k] = x + y;
a[j + mid + k] = x - y;
w = w * wn;
}
}
}
}
int main() {
n = init(); m = init();
for(int i = 0; i <= n; i++) a[i].x = init();
for(int i = 0; i <= m; i++) b[i].x = init();
lim = 1;
while(lim <= n + m) {lim <<= 1; limcnt++;}
for(int i = 0; i <= lim; i++) rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (limcnt - 1));
fft(a, 1);
fft(b, 1);
for(int i = 0; i <= lim; i++) a[i] = a[i] * b[i];
fft(a, -1);
for(int i = 0; i <= n + m; i++) {
printf("%d ", (int)(a[i].x / lim + 0.5));
}
return 0;
}

NTT

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#define ll long long
using namespace std;
const int MAXN = 4000005, MOD = 998244353, gg = 3, gi = 332748118;
ll init() {
ll rv = 0, fh = 1;
char c = getchar();
while(c < '0' || c > '9') {
if(c == '-') fh = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
rv = (rv<<1) + (rv<<3) + c - '0';
c = getchar();
}
return fh * rv;
}
ll lim = 1, limcnt, rev[MAXN], n, m, a[MAXN], b[MAXN];
ll ksm(ll a, ll k) {
ll ans = 1;
while(k) {
if(k & 1ll) {
(ans *= a) %= MOD;
}
(a *= a) %= MOD;
k >>= 1;
}
return ans;
}
void ntt(ll a[], int opt) {
for(int i = 0; i <= lim; i++) {
if(i < rev[i]) swap(a[i], a[rev[i]]);
}
for(int mid = 1; mid < lim; mid <<= 1) {
ll wn = ksm(opt == 1 ? gg : gi, (MOD - 1) / (mid << 1));
for(int R = mid << 1, j = 0; j < lim; j += R) {
ll w = 1;
for(int k = 0; k < mid; k++) {
ll x = a[j + k], y = w * a[j + mid + k] % MOD;
a[j + k] = (x + y) % MOD;
a[j + mid + k] = (x - y + MOD) % MOD;
(w *= wn) %= MOD;
}
}
}
if(opt == -1) {
ll inv = ksm(lim, MOD - 2);
for(int i = 0; i <= lim; i++) {
(a[i] *= inv) %= MOD;
}
}
}
int main() {
n = init(); m = init();
for(int i = 0; i <= n; i++) {
a[i] = init();
}
for(int i = 0; i <= m; i++) b[i] = init();
while(lim <= (n + m)) lim <<= 1, limcnt++;
for(int i = 0; i <= lim; i++)
rev[i] = (rev[i>>1]>>1) | ((i&1)<<(limcnt-1));
ntt(a, 1);
ntt(b, 1);
for(int i = 0; i <= lim; i++) (a[i] = a[i] * b[i]) %= MOD;
ntt(a, -1);
for(int i = 0; i <= n + m; i++) {
printf("%lld ", a[i]);
}
printf("\n");
return 0;
}

FFT与NTT的更多相关文章

  1. 多项式乘法,FFT与NTT

    多项式: 多项式?不会 多项式加法: 同类项系数相加: 多项式乘法: A*B=C $A=a_0x^0+a_1x^1+a_2x^2+...+a_ix^i+...+a_{n-1}x^{n-1}$ $B=b ...

  2. FFT和NTT学习笔记_基础

    FFT和NTT学习笔记 算法导论 参考(贺) http://picks.logdown.com/posts/177631-fast-fourier-transform https://blog.csd ...

  3. fft,ntt总结

    一个套路:把式子推成卷积形式,然后用fft或ntt优化求解过程. fft的扩展性不强,不可以在fft函数里多加骚操作--DeepinC T1:多项式乘法 板子题 T2:快速傅立叶之二 另一个板子,小技 ...

  4. 多项式fft、ntt、fwt 总结

    做了四五天的专题,但是并没有刷下多少题.可能一开始就对多项式这块十分困扰,很多细节理解不深. 最简单的形式就是直接两个多项式相乘,也就是多项式卷积,式子是$N^2$的.多项式算法的过程就是把卷积做一种 ...

  5. FFT与NTT专题

    先不管旋转操作,考虑化简这个差异值 $$begin{aligned}sum_{i=1}^n(x_i-y_i-c)^2&=sum_{i=1}^n(x_i-y_i)^2+nc^2-2csum_{i ...

  6. 卷积FFT、NTT、FWT

    先简短几句话说说FFT.... 多项式可用系数和点值表示,n个点可确定一个次数小于n的多项式. 多项式乘积为 f(x)*g(x),显然若已知f(x), g(x)的点值,O(n)可求得多项式乘积的点值. ...

  7. 多项式的基本运算(FFT和NTT)总结

    设参与运算的多项式最高次数是n,那么多项式的加法,减法显然可以在O(n)时间内计算. 所以我们关心的是两个多项式的乘积.朴素的方法需要O(n^2)时间,并不够优秀. 考虑优化. 多项式乘积 方案一:分 ...

  8. 浅谈FFT、NTT和MTT

    前言 \(\text{FFT}\)(快速傅里叶变换)是 \(O(n\log n)\) 解决多项式乘法的一个算法,\(\text{NTT}\)(快速数论变换)则是在模域下的,而 \(\text{MTT} ...

  9. hdu 1402(FFT乘法 || NTT乘法)

    A * B Problem Plus Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Other ...

随机推荐

  1. vue项目跨域问题

    跨域 了解同源政策:所谓"同源"指的是"三个相同". 协议相同 域名相同 端口相同 解决跨域 jsonp 缺点:只能get请求 ,需要修改B网站的代码 cors ...

  2. 读取properties的简单方法,使用@Configuration

    配置类代码如下 import org.springframework.beans.factory.annotation.Value; import org.springframework.contex ...

  3. 第四篇:python操作数据库时的传参问题

    python在操作数据库执行sql的时候我们经常会遇到传参问题,以下是我总结的几种方法: 1.格式化字符串 city = 'beijing'cur.execute(“SELECT * FROM %s ...

  4. docker 学习(2)

    docker容器中安装vim ubuntu 中默认未装vim,docker run ubuntu vim 出现: container_linux.go:247: starting container ...

  5. sqoop安装和使用

    下载版本:sqoop-1.4.6.bin__hadoop-2.0.4-alpha.tar.gz 官网:http://mirror.bit.edu.cn/apache/sqoop/1.4.6/ jdbc ...

  6. 慢慢琢磨JVM

    1 JVM简介 JVM是一个Javaer的最基本功底了,刚开始学Java的时候,一般都是从“Hello World”开始的,然后会写个复杂点class,然后再找一些开源框架,比如Spring,Hibe ...

  7. luogu3224 [HNOI2012]永无乡

    线段树合并好写好调,隔壁老王的treap+启发式合并难写难调 #include <iostream> #include <cstdio> using namespace std ...

  8. Intellij IDEA快捷键大全

    Intellij IDEA快捷键大全 Intellij IDEA这个工具有些方面确实比较优秀,使用了一段时间的IntelliJ IDEA,感觉这个JAVA IDE非常好用!比如javascript自动 ...

  9. Windows下MySQL8.0.11.0安装教程

    1.mysql下载地址:https://dev.mysql.com/downloads/installer/ 2.下载安装MySQL 8.0.11.0 https://cdn.mysql.com//D ...

  10. SQL 语句执行后同步返回结果条数

    PgSQL SELECT COUNT(*) OVER() AS res_count FROM table WHERE ... MySQL mysql> SELECT SQL_CALC_FOUND ...