【bzoj2333】[SCOI2011]棘手的操作 可并堆+STL-set
UPD:复杂度是fake的...大家还是去写启发式合并吧。
题目描述
有N个节点,标号从1到N,这N个节点一开始相互不连通。第i个节点的初始权值为a[i],接下来有如下一些操作:
U x y: 加一条边,连接第x个节点和第y个节点
A1 x v: 将第x个节点的权值增加v
A2 x v: 将第x个节点所在的连通块的所有节点的权值都增加v
A3 v: 将所有节点的权值都增加v
F1 x: 输出第x个节点当前的权值
F2 x: 输出第x个节点所在的连通块中,权值最大的节点的权值
F3: 输出所有节点中,权值最大的节点的权值
输入
输入的第一行是一个整数N,代表节点个数。
接下来一行输入N个整数,a[1], a[2], …, a[N],代表N个节点的初始权值。
再下一行输入一个整数Q,代表接下来的操作数。
最后输入Q行,每行的格式如题目描述所示。
输出
对于操作F1, F2, F3,输出对应的结果,每个结果占一行。
样例输入
3
0 0 0
8
A1 3 -20
A1 2 20
U 1 3
A2 1 10
F1 3
F2 3
A3 -10
F3
样例输出
-10
10
10
题解
可并堆+STL-set
题目中要求维护一个数据结构,支持连通块合并、单点修改、连通块修改、单点查询、连通块查询,可并堆无疑是最好的选择。
对于F3操作,再用一个set维护一下每个连通块的最大值即可。A3操作的话直接记录一下总体加了多少,询问时再加入答案。
这样嘴上说起来还是挺容易的,然而事实上细节超多。
1.使用set时要时刻注意是否该加东西,是否该删东西,以及不要“不小心”删到不存在的元素(不然无故RE死得不知有多惨)
2.可并堆树高是logn的!这意味着并不需要使用并查集即可完成所有操作,查询连通块时直接不断向上寻找fa即可。
代码看起来还是挺简单的
另外亲测左偏树和斜堆时间上差不多,代码中写了左偏树
#include <cstdio>
#include <set>
#define N 300010
using namespace std;
multiset<int> s;
multiset<int>::iterator it;
int w[N] , fa[N] , l[N] , r[N] , d[N] , add[N];
char str[5];
void pushdown(int x)
{
if(add[x]) w[l[x]] += add[x] , w[r[x]] += add[x] , add[l[x]] += add[x] , add[r[x]] += add[x] , add[x] = 0;
}
void update(int x)
{
if(fa[x]) update(fa[x]);
pushdown(x);
}
int find(int x)
{
return fa[x] ? find(fa[x]) : x;
}
int merge(int x , int y)
{
if(!x) return y;
if(!y) return x;
pushdown(x) , pushdown(y);
if(w[x] < w[y]) swap(x , y);
r[x] = merge(r[x] , y) , fa[r[x]] = x;
if(d[l[x]] < d[r[x]]) swap(l[x] , r[x]);
d[x] = d[r[x]] + 1;
return x;
}
int clear(int x)
{
int t = merge(l[x] , r[x]) , f = fa[x];
fa[x] = l[x] = r[x] = 0;
if(x == l[f]) l[f] = t;
else r[f] = t;
fa[t] = f;
return find(t);
}
void del(int x)
{
s.erase(s.find(x));
}
int main()
{
int n , i , m , v = 0 , x , y , tx , ty;
scanf("%d" , &n);
for(i = 1 ; i <= n ; i ++ ) scanf("%d" , &w[i]) , s.insert(w[i]);
scanf("%d" , &m);
d[0] = -1;
while(m -- )
{
scanf("%s" , str);
if(str[0] == 'U')
{
scanf("%d%d" , &x , &y) , tx = find(x) , ty = find(y);
if(tx != ty)
{
if(merge(tx , ty) == tx) del(w[ty]);
else del(w[tx]);
}
}
else if(str[0] == 'A')
{
scanf("%d" , &x);
if(str[1] == '1') scanf("%d" , &y) , update(x) , del(w[find(x)]) , w[x] += y , s.insert(w[merge(x , clear(x))]);
else if(str[1] == '2') scanf("%d" , &y) , tx = find(x) , del(w[tx]) , w[tx] += y , s.insert(w[tx]) , add[tx] += y;
else v += x;
}
else
{
if(str[1] == '1') scanf("%d" , &x) , update(x) , printf("%d\n" , w[x] + v);
else if(str[1] == '2') scanf("%d" , &x) , tx = find(x) , printf("%d\n" , w[tx] + v);
else printf("%d\n" , *(--s.end()) + v);
}
}
return 0;
}
【bzoj2333】[SCOI2011]棘手的操作 可并堆+STL-set的更多相关文章
- [bzoj2333] [SCOI2011]棘手的操作 (可并堆)
//以后为了凑字数还是把题面搬上来吧2333 发布时间果然各种应景... Time Limit: 10 Sec Memory Limit: 128 MB Description 有N个节点,标号从1 ...
- 【bzoj2333】 [SCOI2011]棘手的操作 可并堆+lazy标记
2016-05-31 21:45:41 题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2333 (学习了黄学长的代码 有如下操作: U x y ...
- 真--可并堆模板--BZOJ2333: [SCOI2011]棘手的操作
n<=300000个点,开始是独立的,m<=300000个操作: 方法一:单点修改.查询,区间修改.查询?等等等等这里修改是块修改不是连续的啊,那就让他连续呗!具体方法:离线后,每次连接两 ...
- BZOJ2333 [SCOI2011]棘手的操作 堆 左偏树 可并堆
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ2333 题意概括 有N个节点,标号从1到N,这N个节点一开始相互不连通.第i个节点的初始权值为a[i ...
- 2019.01.17 bzoj2333: [SCOI2011]棘手的操作(启发式合并)
传送门 启发式合并菜题. 题意:支持与连通块有关的几种操作. 要求支持连边,单点修改,连通块修改,全局修改和单点查值,连通块查最大值和全局最大值. 我们对每个连通块和答案用可删堆维护最大值,然后用启发 ...
- BZOJ 2333: [SCOI2011]棘手的操作 可并堆 左偏树 set
https://www.lydsy.com/JudgeOnline/problem.php?id=2333 需要两个结构分别维护每个连通块的最大值和所有连通块最大值中的最大值,可以用两个可并堆实现,也 ...
- BZOJ2333:[SCOI2011]棘手的操作(Splay)
Description 有N个节点,标号从1到N,这N个节点一开始相互不连通.第i个节点的初始权值为a[i],接下来有如下一些操作: U x y: 加一条边,连接第x个节点和第y个节点 A1 x v: ...
- BZOJ2333 [SCOI2011]棘手的操作 【离线 + 线段树】
题目 有N个节点,标号从1到N,这N个节点一开始相互不连通.第i个节点的初始权值为a[i],接下来有如下一些操作: U x y: 加一条边,连接第x个节点和第y个节点 A1 x v: 将第x个节点的权 ...
- [SCOI2011]棘手的操作(可并堆/并查集/线段树)
我懒死了 过于棘手 但这题真的很水的说 毕竟写啥都能过 常见思路: ①:由于不强制在线,所以重新编号之后线段树维护 ②:用各种可以高速合并的数据结构,比如可并堆,可并平衡树啥的 讲一种无脑算法: 对于 ...
随机推荐
- UIView Border color
// // UIView+Borders.h // // Created by Aaron Ng on 12/28/13. // Copyright (c) 2013 Delve. All right ...
- xwork-conversion.properties 目前没有解决方案
它没法变成.xml 这意味着项目里就只能这样
- Linux OpenGL 实践篇-16 文本绘制
文本绘制 本文主要射击Freetype的入门理解和在OpenGL中实现文字的渲染. freetype freetype的官网,本文大部分内容参考https://www.freetype.org/fre ...
- 组件的通信 :provide / inject 对象进入后,就等于不用props,然后内部对象,直接复制可以接受数组,属性不能直接复制,可以用Object.assgin覆盖对象,或者Vue的set 双向绑定数据
组件的通信 :provide / inject 对象进入后,就等于不用props,然后内部对象,直接复制可以接受数组,属性不能直接复制,可以用Object.assgin覆盖对象,或者Vue的set 双 ...
- 2018.5.5 phpStorm破解2017.3版本方法
方法一 注册时,在打开的License Activation窗口中选择"License server",在输入框输入下面的网址: http://im.js.cn:8888 (新) ...
- GC执行finalize的过程以及对象的一次自我拯救
参考资料:深入理解java虚拟机 /** * 此代码演示了两点: * 1.对象可以在被GC时自我拯救 * 2.这种自救的机会只有一次,因为一个对象的finalize()方法只会被系统自动调一次 */ ...
- jquery Syntax error, unrecognized expression:的解决方法
原文地址 https://blog.csdn.net/flowingfog/article/details/42739773 问题: 将模板的html内容转换成jquery时报以下错误:Syntax ...
- 解决cocos游戏安卓release版本闪退问题
在cocos中偶尔会遇到闪退的问题,特别是android和ios系统下的闪退就特别难处理了, 虽然说能使用xcode和eclipse显示log,但是也会出现一些特别的情况,直接闪退而且 没有任何预兆. ...
- 八皇后问题(DFS)
题目描述: 要在国际象棋棋盘中放八个皇后,使任意两个皇后都不能互相吃,皇后能吃同一行.同一列,同一对角线上(两个方向的对角线)的任意棋子.现在给一个整数n(n<=92),输出前n种的摆法. 输入 ...
- 日志切割logrotate和定时任务crontab详解
1.关于日志切割 日志文件包含了关于系统中发生的事件的有用信息,在排障过程中或者系统性能分析时经常被用到.对于忙碌的服务器,日志文件大小会增长极快,服务器会很快消耗磁盘空间,这成了个问题.除此之外,处 ...