Bzoj3004 吊灯
Time Limit: 10 Sec Memory Limit: 128 MB
Submit: 72 Solved: 46
Description
Input
Output
Sample Input
1,2,3,4,5
Sample Output
1
2
3
6
Case #2:
1
2
6
Case #3:
1
3
6
Case #4:
1
3
6
Case #5:
1
3
6
Case #6:
1
2
6
Case #7:
1
2
3
6
Case #8:
1
6
Case #9:
1
2
6
Case #10:
1
3
6
HINT
对于100%的数据,n<=1.2*106。
Source
脑洞题。
看到数据范围,内心惴惴不安。再看时间限制10s,嗨呀,随便写嘛!
树的重建是需要暴力维护的,不可避。
重建树后,统计每个结点的子树的结点总数。如果每种颜色的灯泡有k个,那么必须满足n%k==0,且结点数等于k的倍数的子树有n/k个。
统计树size的时候,建边DFS太浪费时间,由于每个结点的父亲编号必定小于自身,可以从编号n到编号1依次上传更新size。
/*by SilverN*/
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<cmath>
using namespace std;
const int mxn=;
int read(){
int x=,f=;char ch=getchar();
while(ch<'' || ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>='' && ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int n;
int a[mxn],cnt=;
int fa[mxn],num[mxn];
int c[mxn];
//void DFS(int u,int fa){
//}
void reset(){
for(int i=;i<=n;i++){
fa[i]=(fa[i]+)%(i-)+;
}
return;
}
void init1(){
int m=sqrt(n);
for(int i=;i<=m;i++){
if(n%i==){
a[++cnt]=i;
if(i*i!=n)a[++cnt]=n/i;
}
}
return;
}
void init(){
memset(c,,sizeof c);
for(int i=;i<=n;i++)num[i]=;
return;
}
void solve(){
init();
int i,j;
for(i=n;i>=;i--)
num[fa[i]]+=num[i];
for(i=;i<=n;i++)c[num[i]]++;
for(i=;i<=cnt;i++){
int x=a[i];//每种颜色x个灯泡
int res=;
for(j=x;j<=n;j+=x){
res+=c[j];
}
if(n/x==res)printf("%d\n",x);
}
return;
}
int main(){
n=read();
init1();
int i,j;
for(i=;i<=n;i++)fa[i]=read();
printf("Case #1:\n");
solve();
for(i=;i<=;i++){
printf("Case #%d:\n",i+);
reset();
solve();
}
return ;
}
Bzoj3004 吊灯的更多相关文章
- BZOJ3004: 吊灯(结论 毒瘤)
题意 $n$个节点的树,判断能否划分成$\frac{n}{k}$个大小为$k$的联通块 Sol 首先$k$必须是$n$的倍数. 然后刚开始我就非常傻的以为输出所有约数就行了.. 但是图是这样,$k = ...
- [bzoj3004] [SDOi2012]吊灯
Description Alice家里有一盏很大的吊灯.所谓吊灯,就是由很多个灯泡组成.只有一个灯泡是挂在天花板上的,剩下的灯泡都是挂在其他的灯泡上的.也就是说,整个吊灯实际上类似于[b]一棵树[/b ...
- [bzoj3004][SDOI2012]吊灯——樹形DP
Brief Description 給定一棵樹, 判斷是否可以將其分成\(\frac{n}{k}\)個聯通塊, 其中每個聯通塊的大小均爲k. Algorithm Design 我們有一個結論: k可行 ...
- 【BZOJ】【3004】吊灯
思路题 要将整棵树分成大小相等的连通块,那么首先我们可以肯定的是每块大小x一定是n的约数,且恰好分成$\frac{n}{x}$块,所以我有了这样一个思路:向下深搜,如果一个节点的size=x,就把这个 ...
- P2351 [SDOi2012]吊灯
P2351 [SDOi2012]吊灯 https://www.luogu.org/problemnew/show/P2351 题意: 一棵树,能否全部分成大小为x的联通块. 分析: 显然x是n ...
- 洛谷P2351 [SDOi2012]吊灯 【数学】
题目 Alice家里有一盏很大的吊灯.所谓吊灯,就是由很多个灯泡组成.只有一个灯泡是挂在天花板上的,剩下的灯泡都是挂在其他的灯泡上的.也就是说,整个吊灯实际上类似于[b]一棵树[/b].其中编号为 1 ...
- ATR吊灯止损策略 (含有tbquant源码)
ATR吊灯止损策略定义: 做多,止损放在最高价之下N个ATR. 做空,止损放在最低价之上N个ATR. 该策略生成的止损点就像是从市场最高价的"天花板"上悬挂下来的吊灯.所以命名为A ...
- [SDOi2012]吊灯
嘟嘟嘟 这题想了半天,搞出了一个\(O(10 * d * n)\)(\(d\)为\(n\)的约数个数)的贪心算法,就是能在子树内匹配就在子树内匹配,否则把没匹配的都交给父亲,看父亲能否匹配.交上去开了 ...
- BZOJ.3004.[SDOI2012]吊灯(结论)
题目链接 BZOJ 洛谷 题意: 将树划分为k个连通块,要求每个连通块大小相同.输出可能的大小. 结论: 满足条件时颜色的连通块数为k,当且仅当有 \(n/k\) 个节点满足它的子树是k的倍数(显然还 ...
随机推荐
- CSS3 3D骰子
z zz zz zzzz zzzzz zzzzzz
- Cannot resolve external dependency com.android.support:multidex:1.0.0
multiDexEnabled true 去掉这一行,就OK了,是没有多dex支持么,但是又提供了这个
- lecture4-神经网络在语言上的应用
Hinton第四课 这一课主要介绍神经网络在语言处理上应用,而主要是在文本上,并附上了2003年Bengio 等人的19页的论文<A Neural Probabilistic Language ...
- web安全——应用(java)
简介 由于网络技术日趋成熟,黑客们也将注意力从以往对网络服务器的攻击逐步转移到了对web应用的攻击.据最新调查,信息安全有75%都发生在web应用而非网络层面. 场景 控制访问的权限.只让可以访问的访 ...
- sql server存储过程编程
存储过程是一组完成特定功能的SQL 语句集合,经编译后存储在数据库中. 存储过程作为一个单元进行处理并以一个名称来标识.它能向用户返回数据.向数据库表中写入或修改数据等操作. 用户通过指定存储过程 ...
- jsonp的优缺点
转载:http://www.w3cfuns.com/notes/18271/df9ecd8f0ca5e523ae75745a3996c47c.html JSONP的优缺点 1.优点 ...
- [BZOJ1188][HNOI2007]分裂游戏(博弈论)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1188 分析: 设SG[i]表示一个石子在位置i上的SG值 这个很容易暴力求,因为i的后 ...
- libsvm使用详细说明
一,简介 LibSVM是台湾林智仁(Chih-Jen Lin)教授2001年开发的一套支持向量机的库,这套库运算速度还是挺快的,因此成为目前国内应用最多的SVM的库.详细的使用说明及博主博客见下链接: ...
- linux 防火墙开放特定端口与指定ip谨防
vi etc/iptable/sysconfig/iptables linux 开放固定端口 -A INPUT -m state --state NEW -m tcp -p tcp --dport 1 ...
- Java Little Knowledge
1.Constructor running order of Base class and Derived class This is Alibaba's audition problem. clas ...