Time Limit: 10 Sec  Memory Limit: 128 MB

Submit: 72  Solved: 46

Description

       Alice家里有一盏很大的吊灯。所谓吊灯,就是由很多个灯泡组成。只有一个灯泡是挂在天花板上的,剩下的灯泡都是挂在其他的灯泡上的。也就是说,整个吊灯实际上类似于一棵树。其中编号为1的灯泡是挂在天花板上的,剩下的灯泡都是挂在编号小于自己的灯泡上的。
       现在,Alice想要办一场派对,她想改造一下这盏吊灯,将灯泡换成不同的颜色。她希望相同颜色的灯泡都是相连的,并且每一种颜色的灯泡个数都是相同的。
       Alice希望你能告诉她,总共有哪些方案呢?
       Alice是一个贪心的孩子,如果她发现方案不够多,或者太多了,就会很不高兴,于是她会尝试调整。对于编号为x(x≠1)的灯泡,如果原来是挂在编号为f[x]的灯泡上,那么Alice会把第x个灯泡挂到第 ( f[x] + 19940105 ) mod (x-1) + 1 个灯泡上。
       由于九在古汉语中表示极大的数,于是,Alice决定只调整9次。对于原始状态和每一次调整过的状态,Alice希望你依次告诉她每种状态下有哪些方案。

Input

       第一行一个整数n,表示灯泡的数量。
       接下来一行,有n-1个整数Ui,第i个数字表示第i+1个灯泡挂在了Ui个的下面。保证编号为1的灯泡是挂在天花板上的。数字之间用逗号‘,’隔开且最后一个数字后面没有逗号。

Output

       对于10种状态下的方案,需要按照顺序依次输出。
对于每一种状态,需要先输出单独的一行,表示状态编号,如样例所示。
之后若干行,每行1个整数,表示划分方案中每种颜色的灯泡个数。
       按升序输出。
 

Sample Input

6
1,2,3,4,5

Sample Output

Case #1:
1
2
3
6
Case #2:
1
2
6
Case #3:
1
3
6
Case #4:
1
3
6
Case #5:
1
3
6
Case #6:
1
2
6
Case #7:
1
2
3
6
Case #8:
1
6
Case #9:
1
2
6
Case #10:
1
3
6

HINT

对于100%的数据,n<=1.2*106。

Source

脑洞题。

看到数据范围,内心惴惴不安。再看时间限制10s,嗨呀,随便写嘛!

树的重建是需要暴力维护的,不可避。

重建树后,统计每个结点的子树的结点总数。如果每种颜色的灯泡有k个,那么必须满足n%k==0,且结点数等于k的倍数的子树有n/k个。

统计树size的时候,建边DFS太浪费时间,由于每个结点的父亲编号必定小于自身,可以从编号n到编号1依次上传更新size。

 /*by SilverN*/
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<cmath>
using namespace std;
const int mxn=;
int read(){
int x=,f=;char ch=getchar();
while(ch<'' || ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>='' && ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int n;
int a[mxn],cnt=;
int fa[mxn],num[mxn];
int c[mxn];
//void DFS(int u,int fa){
//}
void reset(){
for(int i=;i<=n;i++){
fa[i]=(fa[i]+)%(i-)+;
}
return;
}
void init1(){
int m=sqrt(n);
for(int i=;i<=m;i++){
if(n%i==){
a[++cnt]=i;
if(i*i!=n)a[++cnt]=n/i;
}
}
return;
}
void init(){
memset(c,,sizeof c);
for(int i=;i<=n;i++)num[i]=;
return;
}
void solve(){
init();
int i,j;
for(i=n;i>=;i--)
num[fa[i]]+=num[i];
for(i=;i<=n;i++)c[num[i]]++;
for(i=;i<=cnt;i++){
int x=a[i];//每种颜色x个灯泡
int res=;
for(j=x;j<=n;j+=x){
res+=c[j];
}
if(n/x==res)printf("%d\n",x);
}
return;
}
int main(){
n=read();
init1();
int i,j;
for(i=;i<=n;i++)fa[i]=read();
printf("Case #1:\n");
solve();
for(i=;i<=;i++){
printf("Case #%d:\n",i+);
reset();
solve();
}
return ;
}

Bzoj3004 吊灯的更多相关文章

  1. BZOJ3004: 吊灯(结论 毒瘤)

    题意 $n$个节点的树,判断能否划分成$\frac{n}{k}$个大小为$k$的联通块 Sol 首先$k$必须是$n$的倍数. 然后刚开始我就非常傻的以为输出所有约数就行了.. 但是图是这样,$k = ...

  2. [bzoj3004] [SDOi2012]吊灯

    Description Alice家里有一盏很大的吊灯.所谓吊灯,就是由很多个灯泡组成.只有一个灯泡是挂在天花板上的,剩下的灯泡都是挂在其他的灯泡上的.也就是说,整个吊灯实际上类似于[b]一棵树[/b ...

  3. [bzoj3004][SDOI2012]吊灯——樹形DP

    Brief Description 給定一棵樹, 判斷是否可以將其分成\(\frac{n}{k}\)個聯通塊, 其中每個聯通塊的大小均爲k. Algorithm Design 我們有一個結論: k可行 ...

  4. 【BZOJ】【3004】吊灯

    思路题 要将整棵树分成大小相等的连通块,那么首先我们可以肯定的是每块大小x一定是n的约数,且恰好分成$\frac{n}{x}$块,所以我有了这样一个思路:向下深搜,如果一个节点的size=x,就把这个 ...

  5. P2351 [SDOi2012]吊灯

    P2351 [SDOi2012]吊灯 https://www.luogu.org/problemnew/show/P2351     题意: 一棵树,能否全部分成大小为x的联通块. 分析: 显然x是n ...

  6. 洛谷P2351 [SDOi2012]吊灯 【数学】

    题目 Alice家里有一盏很大的吊灯.所谓吊灯,就是由很多个灯泡组成.只有一个灯泡是挂在天花板上的,剩下的灯泡都是挂在其他的灯泡上的.也就是说,整个吊灯实际上类似于[b]一棵树[/b].其中编号为 1 ...

  7. ATR吊灯止损策略 (含有tbquant源码)

    ATR吊灯止损策略定义: 做多,止损放在最高价之下N个ATR. 做空,止损放在最低价之上N个ATR. 该策略生成的止损点就像是从市场最高价的"天花板"上悬挂下来的吊灯.所以命名为A ...

  8. [SDOi2012]吊灯

    嘟嘟嘟 这题想了半天,搞出了一个\(O(10 * d * n)\)(\(d\)为\(n\)的约数个数)的贪心算法,就是能在子树内匹配就在子树内匹配,否则把没匹配的都交给父亲,看父亲能否匹配.交上去开了 ...

  9. BZOJ.3004.[SDOI2012]吊灯(结论)

    题目链接 BZOJ 洛谷 题意: 将树划分为k个连通块,要求每个连通块大小相同.输出可能的大小. 结论: 满足条件时颜色的连通块数为k,当且仅当有 \(n/k\) 个节点满足它的子树是k的倍数(显然还 ...

随机推荐

  1. CSS3 3D骰子

    z zz zz zzzz zzzzz zzzzzz

  2. Cannot resolve external dependency com.android.support:multidex:1.0.0

    multiDexEnabled true 去掉这一行,就OK了,是没有多dex支持么,但是又提供了这个

  3. lecture4-神经网络在语言上的应用

    Hinton第四课 这一课主要介绍神经网络在语言处理上应用,而主要是在文本上,并附上了2003年Bengio 等人的19页的论文<A Neural Probabilistic Language ...

  4. web安全——应用(java)

    简介 由于网络技术日趋成熟,黑客们也将注意力从以往对网络服务器的攻击逐步转移到了对web应用的攻击.据最新调查,信息安全有75%都发生在web应用而非网络层面. 场景 控制访问的权限.只让可以访问的访 ...

  5. sql server存储过程编程

    存储过程是一组完成特定功能的SQL 语句集合,经编译后存储在数据库中.   存储过程作为一个单元进行处理并以一个名称来标识.它能向用户返回数据.向数据库表中写入或修改数据等操作. 用户通过指定存储过程 ...

  6. jsonp的优缺点

    转载:http://www.w3cfuns.com/notes/18271/df9ecd8f0ca5e523ae75745a3996c47c.html JSONP的优缺点        1.优点    ...

  7. [BZOJ1188][HNOI2007]分裂游戏(博弈论)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1188 分析: 设SG[i]表示一个石子在位置i上的SG值 这个很容易暴力求,因为i的后 ...

  8. libsvm使用详细说明

    一,简介 LibSVM是台湾林智仁(Chih-Jen Lin)教授2001年开发的一套支持向量机的库,这套库运算速度还是挺快的,因此成为目前国内应用最多的SVM的库.详细的使用说明及博主博客见下链接: ...

  9. linux 防火墙开放特定端口与指定ip谨防

    vi etc/iptable/sysconfig/iptables linux 开放固定端口 -A INPUT -m state --state NEW -m tcp -p tcp --dport 1 ...

  10. Java Little Knowledge

    1.Constructor running order of Base class and Derived class This is Alibaba's audition problem. clas ...