Stanford大学机器学习公开课(四):牛顿法、指数分布族、广义线性模型
(一)牛顿法解最大似然估计
Method)与梯度下降(Gradient
Descent)方法的功能一样,都是对解空间进行搜索的方法。其基本思想如下:
我们先随机选一个点,然后求出该点的切线,即导数,延长它使之与x轴相交,以相交时的x的值作为下一次迭代的值。
那么如何将牛顿方法应用到机器学习问题求解中呢?
上面是当参数θ为实数时的情况,当参数为向量时,更新规则变为如下所示:
其中,H是一个n*n的矩阵,n为参数向量的长度,亦即特征的数目,H是函数的二次导数矩阵,被称为Hessian矩阵,其某个元素Hij计算公式如下:
即为
,这里有点类似于用一阶导数
除以二阶导数;所以,用一个表示一阶导数的向量乘上一个表示二阶导数的矩阵的逆。
其中,η称为分布的自然参数(nature parameter);T(y)是充分统计量(sufficient
statistic),通常T(y)=y。当参数a、b、T都固定时,就定义了一个以η为参数的函数族。
顾客数量等问题;
将其转换形式,推导如下:
通过上式,就将伯努利分布表示成了指数分布的形式;其中:
可以看到,η的形式与之前提及的logistic函数一致,这是因为logistic模型对问题的前置概率估计是伯努利分布的缘故。
由上式可知:
推导的关键在于将指数内部的纯y项移到外面,纯非y项作为函数a,混杂项为。
Linear Model,GLM)。在伯努利分布表示成指数分布族的形式的公式中,η与参数φ的关系是logistic函数,再通过推导可以得到逻辑回归(推导过程在下面);在高斯分布表示成指数分布族的形式的公式中,η与正太分布的参数μ的关系是相等,我们可以推导出最小二乘模型(Ordinary
Least Squares)。通过这两个例子,我们大致可以得到结论,η以不同的映射函数与其它概率分布函数中的参数发生联系,从而得到不同的模型,广义线性模型正式将指数分布族中的所有成员(每个成员正好有一个这样的联系)都作为线性模型的扩展,通过各种非线性的连接函数将线性函数映射到其它空间从而大大扩大了线性模型可解决的问题。
依据这三个假设,我们可以推导出ogistic模型与最小二乘模型。Logistic模型的推导过程如下:
上式中,第一行是伯努利分布的性质,第二行由假设二与假设三推出。
同样的,对于最小二乘模型,推导过程如下:
其中,将η与原始概率分布中的参数联系起来的函数称为正则响应函数(canonical response
function),如即是正则响应函数。正则响应函数的逆称为正则关联函数(canonical
link function)。
多项式分布推导出的GLM可以解决多分类问题,是logistic模型的扩展。应用的问题比如邮件分类、预测病人患的什么病等。
其中,因为
为了使多项式分布能够写成指数分布族的形式,首先定义T(y),如下所示:
这样,我们还可以引入指示函数I,使得
这样,T(y)向量中的某个元素还可以表示成: 举例来说,当y=2时,
。根据上式,我们还可以得到:
于是,二项分布转变为指数分布族的推导如下:
上式中最后一步的各个分量分别如下:
由η表达式可知:
为了表示方便,再定义: 于是,可以得到:
代入,得到:
从而,我们就得到了连接函数,有了连接函数后,就可以把多项式分布的概率表达出来,即将上式代入
注意到,上式中的每个参数η都是一个可用线性向量表示出来的,因而这里的θ其实是一个二维矩阵。
那么如何根据假设函数h求得参数θ,当然还是最大似然函数的方法,最大似然函数如下:
对上式取对数,得到如下最大似然函数:
然后,将
regression。
Stanford大学机器学习公开课(四):牛顿法、指数分布族、广义线性模型的更多相关文章
- Stanford大学机器学习公开课(五):生成学习算法、高斯判别、朴素贝叶斯
(一)生成学习算法 在线性回归和Logistic回归这种类型的学习算法中我们探讨的模型都是p(y|x;θ),即给定x的情况探讨y的条件概率分布.如二分类问题,不管是感知器算法还是逻辑回归算法,都是在解 ...
- Stanford大学机器学习公开课(三):局部加权回归、最小二乘的概率解释、逻辑回归、感知器算法
(一)局部加权回归 通常情况下的线性拟合不能很好地预测所有的值,因为它容易导致欠拟合(under fitting).如下图的左图.而多项式拟合能拟合所有数据,但是在预测新样本的时候又会变得很糟糕,因为 ...
- Stanford大学机器学习公开课(六):朴素贝叶斯多项式模型、神经网络、SVM初步
(一)朴素贝叶斯多项式事件模型 在上篇笔记中,那个最基本的NB模型被称为多元伯努利事件模型(Multivariate Bernoulli Event Model,以下简称 NB-MBEM).该模型有多 ...
- Stanford大学机器学习公开课(二):监督学习应用与梯度下降
本课内容: 1.线性回归 2.梯度下降 3.正规方程组 监督学习:告诉算法每个样本的正确答案,学习后的算法对新的输入也能输入正确的答案 1.线性回归 问题引入:假设有一房屋销售的数据如下: 引 ...
- LR 算法总结--斯坦福大学机器学习公开课学习笔记
在有监督学习里面有几个逻辑上的重要组成部件[3],初略地分可以分为:模型,参数 和 目标函数.(此部分转自 XGBoost 与 Boosted Tree) 一.模型和参数 模型指给定输入xi如何去 ...
- Andrew Ng机器学习公开课笔记 -- 学习理论
网易公开课,第9,10课 notes,http://cs229.stanford.edu/notes/cs229-notes4.pdf 这章要讨论的问题是,如何去评价和选择学习算法 Bias/va ...
- Andrew Ng机器学习公开课笔记 -- 支持向量机
网易公开课,第6,7,8课 notes,http://cs229.stanford.edu/notes/cs229-notes3.pdf SVM-支持向量机算法概述, 这篇讲的挺好,可以参考 先继 ...
- Andrew Ng机器学习公开课笔记 -- Generalized Linear Models
网易公开课,第4课 notes,http://cs229.stanford.edu/notes/cs229-notes1.pdf 前面介绍一个线性回归问题,符合高斯分布 一个分类问题,logstic回 ...
- Andrew Ng机器学习公开课笔记 -- Logistic Regression
网易公开课,第3,4课 notes,http://cs229.stanford.edu/notes/cs229-notes1.pdf 前面讨论了线性回归问题, 符合高斯分布,使用最小二乘来作为损失函数 ...
随机推荐
- .net实现微信公众账号接口开发
说起微信公众帐号,大家都不会陌生,使用这个平台能给网站或系统增加一个新亮点,直接进入正题吧,在使用之前一定要仔细阅读官方API文档. API文档地址:http://mp.weixin.qq.com/w ...
- 利用LruCache为GridView加载大量本地图片完整示例
MainActivity如下: package cc.testlrucache; import android.os.Bundle; import android.widget.GridView; i ...
- IntelliJ Idea 修改编码格式
Setting→Editor→File Encodings→设置“Project Encoding”为UTF-8,如图:
- ios工程中加入.c/.cpp文件
如果你在工程里拉入.c/.cpp文件就会导致工程报错, 现在有两种解决方式 1. 把.c文件的后缀全部改成.m的后缀 把.cpp文件的后缀改成.mm的后缀 2. 使用 工程名-Prefix.pch 并 ...
- python扩展实现方法--python与c混和编程 转自:http://www.cnblogs.com/btchenguang/archive/2012/09/04/2670849.html
前言 需要扩展Python语言的理由: 创建Python扩展的步骤 1. 创建应用程序代码 2. 利用样板来包装代码 a. 包含python的头文件 b. 为每个模块的每一个函数增加一个型如PyObj ...
- [BZOJ1662][POJ3252]Round Numbers
[POJ3252]Round Numbers 试题描述 The cows, as you know, have no fingers or thumbs and thus are unable to ...
- 一次简单的绕过apk签名校验
朋友发来一个apk,需要分析其中的一些算法,分析过程涉及到了重新打包apk,打包后的apk运行失败,估计是apk内部有检验是否被篡改的代码.检验apk是否被篡改,简单的方法是直接校验签名,如果apk签 ...
- 解决vista和win7在windows服务中交互桌面权限问题:穿透Session 0 隔离
在某国外大型汽车公司BI项目中,有一个子项目,需要通过大屏幕展示销售报表,程序需要自动启动和关闭.开发人员在开发过程中,发现在Win7的service中不能直接操作UI进程,调查过程中,发现如 ...
- BZOJ 3832: [Poi2014]Rally
Sol 线段树+拓扑序. 先把图的拓扑序搞出来,然后统计从起点到该点最长链,从该点到终点的最长链,然后建个起点终点,这里跟网络流很像,把它统一到一个有起点的图中,这里也要注意下细节处理.S,T的一个边 ...
- Python自动化之线程进阶篇(二)
queue队列 class queue.Queue(maxsize=0) #先入先出 class queue.LifoQueue(maxsize=0) #后入先出 class queue.Priori ...