Bots(逆元,递推)
1.5 seconds
256 megabytes
standard input
standard output
Sasha and Ira are two best friends. But they aren’t just friends, they are software engineers and experts in artificial intelligence. They are developing an algorithm for two bots playing a two-player game. The game is cooperative and turn based. In each turn, one of the players makes a move (it doesn’t matter which player, it's possible that players turns do not alternate).
Algorithm for bots that Sasha and Ira are developing works by keeping track of the state the game is in. Each time either bot makes a move, the state changes. And, since the game is very dynamic, it will never go back to the state it was already in at any point in the past.
Sasha and Ira are perfectionists and want their algorithm to have an optimal winning strategy. They have noticed that in the optimal winning strategy, both bots make exactly N moves each. But, in order to find the optimal strategy, their algorithm needs to analyze all possible states of the game (they haven’t learned about alpha-beta pruning yet) and pick the best sequence of moves.
They are worried about the efficiency of their algorithm and are wondering what is the total number of states of the game that need to be analyzed?
The first and only line contains integer N.
- 1 ≤ N ≤ 106
Output should contain a single integer – number of possible states modulo 109 + 7.
2
19
Start: Game is in state A.
- Turn 1: Either bot can make a move (first bot is red and second bot is blue), so there are two possible states after the first turn – B and C.
- Turn 2: In both states B and C, either bot can again make a turn, so the list of possible states is expanded to include D, E, F and G.
- Turn 3: Red bot already did N=2 moves when in state D, so it cannot make any more moves there. It can make moves when in state E, F and G, so states I, K and M are added to the list. Similarly, blue bot cannot make a move when in state G, but can when in D, E and F, so states H, J and L are added.
- Turn 4: Red bot already did N=2 moves when in states H, I and K, so it can only make moves when in J, L and M, so states P, R and S are added. Blue bot cannot make a move when in states J, L and M, but only when in H, I and K, so states N, O and Q are added.
Overall, there are 19 possible states of the game their algorithm needs to analyze.

#include<bits/stdc++.h>
using namespace std;
const int M = 2e6 + 10 ;
const int mod = 1e9 + 7 ;
int F[M] , Finv[M] , inv[M] ;
int n ; void table () {
inv[1] = 1 ;
for (int i = 2 ; i < M ; i ++) inv[i] = (mod-mod/i) *1ll* inv[mod%i] % mod ;
Finv[0] = F[0] = 1 ;
for (int i = 1 ; i < M ; i ++) {
F[i] = 1ll*F[i-1]*i%mod ;
Finv[i] = 1ll*Finv[i-1]*inv[i]%mod ;
}
} int comb (int n , int m) {
if (m < 0 || m > n) return 0 ;
return F[n] * 1ll * Finv[n-m] % mod * Finv[m] % mod ;
} int main () {
table () ;
//printf ("comb(3,3)=%d\n" , comb(3,3)) ;
//printf ("F[3] = %d , Finv[0] = %d , Finv[3] = %d\n" , F[3] , Finv[0] , Finv[3] ) ;
//printf ("Finv[2] = %d , inv[3] = %d\n" , Finv[2] , inv[3]) ;
scanf ("%d" , &n) ;
int num = 1 ;
int sum = 1 ;
for (int i = 1 ; i <= 2*n-1 ; i ++) {
num = (comb(i,n) + ((num-comb(i,n))*1ll*2%mod + mod)% mod ) % mod ;
sum = (sum+num) % mod ;
//printf ("num = %d , comb(%d,%d)=%d\n" , num , i , n , comb(i,n)) ;
}
printf ("%d\n" , (1ll*sum*2+1)%mod) ;
return 0 ;
}
首先把产生的树对半开,那么你很容易就可以发现层与层之间是存在递推关系的。
画过图你就会发现,当你从第x从画到第x+1层时,有先点扩展出了两个子节点,有些点只扩展出了一个节点。
进一步观察,你很容易想到,有些点之所以至扩展出一个节点,是因为对于这个支路它的其中一种颜色已经用完了。
而且你可以知道第x层的点数 的物理意义为,走x步的所有方案数。(一直x层共有k个点)
其中只会延伸出一个节点的点数为C(x,n) 。
所以x+1层的点数为 C(x,n) + (k-C(x,n)) * 2 ;
另外,linyujun发现了一个通式:
答案为C(2*(n+1) , n+1) - 1 ; (用眼睛看出来的,6666)
Bots(逆元,递推)的更多相关文章
- 【bzoj 2339】[HNOI2011]卡农(数论--排列组合+逆元+递推)
题意:从编号为 1~N 的音阶中可选任意个数组成一个音乐片段,再集合组成音乐篇章.要求一个音乐篇章中的片段不可重复,都不为空,且出现的音符的次数都是偶数个.问组成 M 个片段的音乐篇章有多少种.答案取 ...
- BZOJ1951 [Sdoi2010]古代猪文 【费马小定理 + Lucas定理 + 中国剩余定理 + 逆元递推 + 扩展欧几里得】
题目 "在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心--" --选自猪王国民歌 很久很久以前,在山的那 ...
- 求逆元的两种方法+求逆元的O(n)递推算法
到国庆假期都是复习阶段..所以把一些东西整理重温一下. gcd(a,p)=1,ax≡1(%p),则x为a的逆元.注意前提:gcd(a,p)=1; 方法一:拓展欧几里得 gcd(a,p)=1,ax≡1( ...
- ACM学习历程—SNNUOJ 1116 A Simple Problem(递推 && 逆元 && 组合数学 && 快速幂)(2015陕西省大学生程序设计竞赛K题)
Description Assuming a finite – radius “ball” which is on an N dimension is cut with a “knife” of N- ...
- 逆元 组合A(n,m) C(n,m)递推 隔板法
求逆元 https://blog.csdn.net/baidu_35643793/article/details/75268911 int inv[N]; void init(){ inv[] = ; ...
- [BJOI2019]光线[递推]
题意 题目链接 分析 令 \(f_i\) 表示光线第一次从第一块玻璃射出第 \(i\) 块玻璃的比率. 令 \(g_i\) 表示光线射回第 \(i\) 块玻璃,再射出第 \(i\) 块玻璃的比率. 容 ...
- BZOJ4451 [Cerc2015]Frightful Formula 多项式 FFT 递推 组合数学
原文链接http://www.cnblogs.com/zhouzhendong/p/8820963.html 题目传送门 - BZOJ4451 题意 给你一个$n\times n$矩阵的第一行和第一列 ...
- AGC001E BBQ Hard 组合、递推
传送门 题意:给出长度为$N$的两个正整数序列$A_i,B_i$,求$\sum\limits_{i=1}^N \sum\limits_{j=i+1}^N C_{A_i+A_j+B_i+B_j}^{A_ ...
- [NOI2017]泳池——概率DP+线性递推
[NOI2017]泳池 实在没有思路啊~~~ luogu题解 1.差分,转化成至多k的概率减去至多k-1的概率.这样就不用记录“有没有出现k”这个信息了 2.n是1e9,感觉要递推然后利用数列的加速技 ...
- [洛谷P4723]【模板】线性递推
题目大意:求一个满足$k$阶齐次线性递推数列$a_i$的第$n$项. 即:$a_n=\sum\limits_{i=1}^{k}f_i \times a_{n-i}$ 题解:线性齐次递推,先见洛谷题解, ...
随机推荐
- [IOS NSUserDefaults]的使用:登陆后不再显示登录界面。
之前搜了好多地方都没找到实现“登陆后不再显示登录界面,而默认自动登录”的方法. 待我发现有种存储方式叫NSUserDefaults的时候,立马又感觉新技能get了. 简介: NSUserDefault ...
- 加州大学伯克利分校Stat2.3x Inference 统计推断学习笔记: FINAL
Stat2.3x Inference(统计推断)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...
- HDU 5904 LCIS (最长公共上升序列)
传送门 Description Alex has two sequences a1,a2,...,an and b1,b2,...,bm. He wants find a longest common ...
- BZOJ1202 [HNOI2005]狡猾的商人&&BZOJ3436小K的农场
差分约束第三题 传送门: 很明显的差分约束,d[y]-d[x-1]>=v d[y]-d[x-1]<=v 根据这个建图然后跑bellman-ford就可以了. //BZOJ 1202 //b ...
- js008-BOM
js008-BOM 本章内容: 1.理解window对象-BOM的核心 2.控制窗口.框架和弹出窗口 3.利用location对象中的页面信息 4.使用navigation对象了解浏览器 ECMASc ...
- Socket通信的理解
1.Socket(套接字) 是支持TCP/IP通信的基本操作单元.包含通信的五种必须信息:通信使用的协议,本机IP和端口,远程IP和端口. 2. 1.TCP连接 手机能够使用联网功能是因为手机底层实现 ...
- PHP中“简单工厂模式”实例讲解
原创文章,转载请注明出处:http://www.cnblogs.com/hongfei/archive/2012/07/07/2580776.html 简单工厂模式:①抽象基类:类中定义抽象一些方法, ...
- vim 使用总结
VIM分屏显示 1 . 水平分屏split(sp) || 垂直分屏vsplit(vs) :(v)split 输入这样的命令后vi就会将当前的窗口平分为两个,并且在这两个窗口中显示的是同一篇文章.如 ...
- IOS下自定义click事件使用alert引发的血案
使用过iscroll插件的同学都知道iscroll支持自定义事件,即在调用iscroll时参数赋值options.click = true. 接下来定义事件如: $clinicAppoint.on(' ...
- Xcode设置
1. 在Search Paths中设置相对路径 径是以.xcodeproj文件为基准,./表示与.xcodeproj同级,../表示上一级 2. 链接动态链接库 设置链接库,在Build Settin ...