from:云栖社区

玛德,今天又被人打脸了,小看人,艹,确实,相对比起来,在某些方面差一点,,,,该好好捋捋了,强化下短板,规划下日程,,,引以为耻,铭记于心。

跟我学Kafka之NIO通信机制

 

main 2016-03-31 16:54:06 浏览166 评论0

摘要: 很久没有做技术方面的分享了,今天闲来有空写一篇关于Kafka通信方面的文章与大家共同学习。 一、Kafka通信机制的整体结构 这个图采用的就是我们之前提到的SEDA多线程模型,链接如下:http://www.jianshu.com/p/e184fdc0ade4 1、对于broker来说,客户...

很久没有做技术方面的分享了,今天闲来有空写一篇关于Kafka通信方面的文章与大家共同学习。

一、Kafka通信机制的整体结构

 
这个图采用的就是我们之前提到的SEDA多线程模型,链接如下:
http://www.jianshu.com/p/e184fdc0ade4
1、对于broker来说,客户端连接数量有限,不会频繁新建大量连接。因此一个Acceptor thread线程处理新建连接绰绰有余。
2、Kafka高吐吞量,则要求broker接收和发送数据必须快速,因此用proccssor thread线程池处理,并把读取客户端数据转交给缓冲区,不会导致客户端请求大量堆积。
3、Kafka磁盘操作比较频繁会且有io阻塞或等待,IO Thread线程数量一般设置为proccssor thread num两倍,可以根据运行环境需要进行调节。

二、SocketServer整体设计时序图

Kafka 通信时序图.jpg

说明:

Kafka SocketServer是基于Java NIO来开发的,采用了Reactor的模式,其中包含了1个Acceptor负责接受客户端请求,N个Processor线程负责读写数据,M个Handler来处理业务逻辑。在Acceptor和Processor,Processor和Handler之间都有队列来缓冲请求。

下面我们就针对以上整体设计思路分开讲解各个不同部分的源代码。

2.1 启动初始化工作

def startup() {
val quotas = new ConnectionQuotas(maxConnectionsPerIp, maxConnectionsPerIpOverrides)
for(i <- 0 until numProcessorThreads) {
processors(i) = new Processor(i,
time,
maxRequestSize,
aggregateIdleMeter,
newMeter("IdlePercent", "percent", TimeUnit.NANOSECONDS, Map("networkProcessor" -> i.toString)),
numProcessorThreads,
requestChannel,
quotas,
connectionsMaxIdleMs)
Utils.newThread("kafka-network-thread-%d-%d".format(port, i), processors(i), false).start()
} newGauge("ResponsesBeingSent", new Gauge[Int] {
def value = processors.foldLeft(0) { (total, p) => total + p.countInterestOps(SelectionKey.OP_WRITE) }
}) // register the processor threads for notification of responses
requestChannel.addResponseListener((id:Int) => processors(id).wakeup()) // start accepting connections
this.acceptor = new Acceptor(host, port, processors, sendBufferSize, recvBufferSize, quotas)
Utils.newThread("kafka-socket-acceptor", acceptor, false).start()
acceptor.awaitStartup
info("Started")
}

说明:

ConnectionQuotas对象负责管理连接数/IP, 创建一个Acceptor侦听者线程,初始化N个Processor线程,processors是一个线程数组,可以作为线程池使用,默认是三个,Acceptor线程和N个Processor线程中每个线程都独立创建Selector.open()多路复用器,相关代码在下面:

val numNetworkThreads = props.getIntInRange("num.network.threads", 3, (1, Int.MaxValue));

val serverChannel = openServerSocket(host, port);

范围可以设定从1到Int的最大值。

2.2 Acceptor线程

def run() {
serverChannel.register(selector, SelectionKey.OP_ACCEPT);
startupComplete()
var currentProcessor = 0
while(isRunning) {
val ready = selector.select(500)
if(ready > 0) {
val keys = selector.selectedKeys()
val iter = keys.iterator()
while(iter.hasNext && isRunning) {
var key: SelectionKey = null
try {
key = iter.next
iter.remove()
if(key.isAcceptable)
accept(key, processors(currentProcessor))
else
throw new IllegalStateException("Unrecognized key state for acceptor thread.") // round robin to the next processor thread
currentProcessor = (currentProcessor + 1) % processors.length
} catch {
case e: Throwable => error("Error while accepting connection", e)
}
}
}
}
debug("Closing server socket and selector.")
swallowError(serverChannel.close())
swallowError(selector.close())
shutdownComplete()
}

2.1.1 注册OP_ACCEPT事件

serverChannel.register(selector, SelectionKey.OP_ACCEPT);

2.1.2 内部逻辑

此处采用的是同步非阻塞逻辑,每隔500MS轮询一次,关于同步非阻塞的知识点在http://www.jianshu.com/p/e9c6690c0737
当有请求到来的时候采用轮询的方式获取一个Processor线程处理请求,代码如下:

currentProcessor = (currentProcessor + 1) % processors.length

之后将代码添加到newConnections队列之后返回,代码如下:

def accept(socketChannel: SocketChannel) {  newConnections.add(socketChannel)  wakeup()}

//newConnections是一个线程安全的队列,存放SocketChannel通道
private val newConnections = new ConcurrentLinkedQueue[SocketChannel]()

2.3 kafka.net.Processor

override def run() {
startupComplete()
while(isRunning) {
// setup any new connections that have been queued up
configureNewConnections()
// register any new responses for writing
processNewResponses()
val startSelectTime = SystemTime.nanoseconds
val ready = selector.select(300)
currentTimeNanos = SystemTime.nanoseconds
val idleTime = currentTimeNanos - startSelectTime
idleMeter.mark(idleTime)
// We use a single meter for aggregate idle percentage for the thread pool.
// Since meter is calculated as total_recorded_value / time_window and
// time_window is independent of the number of threads, each recorded idle
// time should be discounted by # threads.
aggregateIdleMeter.mark(idleTime / totalProcessorThreads) trace("Processor id " + id + " selection time = " + idleTime + " ns")
if(ready > 0) {
val keys = selector.selectedKeys()
val iter = keys.iterator()
while(iter.hasNext && isRunning) {
var key: SelectionKey = null
try {
key = iter.next
iter.remove()
if(key.isReadable)
read(key)
else if(key.isWritable)
write(key)
else if(!key.isValid)
close(key)
else
throw new IllegalStateException("Unrecognized key state for processor thread.")
} catch {
case e: EOFException => {
info("Closing socket connection to %s.".format(channelFor(key).socket.getInetAddress))
close(key)
} case e: InvalidRequestException => {
info("Closing socket connection to %s due to invalid request: %s".format(channelFor(key).socket.getInetAddress, e.getMessage))
close(key)
} case e: Throwable => {
error("Closing socket for " + channelFor(key).socket.getInetAddress + " because of error", e)
close(key)
}
}
}
}
maybeCloseOldestConnection
}
debug("Closing selector.")
closeAll()
swallowError(selector.close())
shutdownComplete()
}

先来重点看一下configureNewConnections这个方法:

private def configureNewConnections() {
while(newConnections.size() > 0) {
val channel = newConnections.poll()
debug("Processor " + id + " listening to new connection from " + channel.socket.getRemoteSocketAddress)
channel.register(selector, SelectionKey.OP_READ)
}
}

循环判断NewConnections的大小,如果有值则弹出,并且注册为OP_READ读事件。
再回到主逻辑看一下read方法。

def read(key: SelectionKey) {
lruConnections.put(key, currentTimeNanos)
val socketChannel = channelFor(key)
var receive = key.attachment.asInstanceOf[Receive]
if(key.attachment == null) {
receive = new BoundedByteBufferReceive(maxRequestSize)
key.attach(receive)
}
val read = receive.readFrom(socketChannel)
val address = socketChannel.socket.getRemoteSocketAddress();
trace(read + " bytes read from " + address)
if(read < 0) {
close(key)
} else if(receive.complete) {
val req = RequestChannel.Request(processor = id, requestKey = key, buffer = receive.buffer, startTimeMs = time.milliseconds, remoteAddress = address)
requestChannel.sendRequest(req)
key.attach(null)
// explicitly reset interest ops to not READ, no need to wake up the selector just yet
key.interestOps(key.interestOps & (~SelectionKey.OP_READ))
} else {
// more reading to be done
trace("Did not finish reading, registering for read again on connection " + socketChannel.socket.getRemoteSocketAddress())
key.interestOps(SelectionKey.OP_READ)
wakeup()
}
}

说明

1、把当前SelectionKey和事件循环时间放入LRU映射表中,将来检查时回收连接资源。
2、建立BoundedByteBufferReceive对象,具体读取操作由这个对象的readFrom方法负责进行,返回读取的字节大小。

  • 如果读取完成,则修改状态为receive.complete,并通过requestChannel.sendRequest(req)将封装好的Request对象放到RequestQueue队列中。
  • 如果没有读取完成,则让selector继续侦听OP_READ事件。

2.4 kafka.server.KafkaRequestHandler

def run() {
while(true) {
try {
var req : RequestChannel.Request = null
while (req == null) {
// We use a single meter for aggregate idle percentage for the thread pool.
// Since meter is calculated as total_recorded_value / time_window and
// time_window is independent of the number of threads, each recorded idle
// time should be discounted by # threads.
val startSelectTime = SystemTime.nanoseconds
req = requestChannel.receiveRequest(300)
val idleTime = SystemTime.nanoseconds - startSelectTime
aggregateIdleMeter.mark(idleTime / totalHandlerThreads)
} if(req eq RequestChannel.AllDone) {
debug("Kafka request handler %d on broker %d received shut down command".format(
id, brokerId))
return
}
req.requestDequeueTimeMs = SystemTime.milliseconds
trace("Kafka request handler %d on broker %d handling request %s".format(id, brokerId, req))
apis.handle(req)
} catch {
case e: Throwable => error("Exception when handling request", e)
}
}
}

说明

KafkaRequestHandler也是一个事件处理线程,不断的循环读取requestQueue队列中的Request请求数据,其中超时时间设置为300MS,并将请求发送到apis.handle方法中处理,并将请求响应结果放到responseQueue队列中去。
代码如下:

try{
trace("Handling request: " + request.requestObj + " from client: " + request.remoteAddress)
request.requestId match {
case RequestKeys.ProduceKey => handleProducerOrOffsetCommitRequest(request)
case RequestKeys.FetchKey => handleFetchRequest(request)
case RequestKeys.OffsetsKey => handleOffsetRequest(request)
case RequestKeys.MetadataKey => handleTopicMetadataRequest(request)
case RequestKeys.LeaderAndIsrKey => handleLeaderAndIsrRequest(request)
case RequestKeys.StopReplicaKey => handleStopReplicaRequest(request)
case RequestKeys.UpdateMetadataKey => handleUpdateMetadataRequest(request)
case RequestKeys.ControlledShutdownKey => handleControlledShutdownRequest(request)
case RequestKeys.OffsetCommitKey => handleOffsetCommitRequest(request)
case RequestKeys.OffsetFetchKey => handleOffsetFetchRequest(request)
case RequestKeys.ConsumerMetadataKey => handleConsumerMetadataRequest(request)
case requestId => throw new KafkaException("Unknown api code " + requestId)
}
} catch {
case e: Throwable =>
request.requestObj.handleError(e, requestChannel, request)
error("error when handling request %s".format(request.requestObj), e)
} finally
request.apiLocalCompleteTimeMs = SystemTime.milliseconds
}

说明如下:

参数 说明 对应方法
RequestKeys.ProduceKey producer请求 ProducerRequest
RequestKeys.FetchKey consumer请求 FetchRequest
RequestKeys.OffsetsKey topic的offset请求 OffsetRequest
RequestKeys.MetadataKey topic元数据请求 TopicMetadataRequest
RequestKeys.LeaderAndIsrKey leader和isr信息更新请求 LeaderAndIsrRequest
RequestKeys.StopReplicaKey 停止replica请求 StopReplicaRequest
RequestKeys.UpdateMetadataKey 更新元数据请求 UpdateMetadataRequest
RequestKeys.ControlledShutdownKey controlledShutdown请求 ControlledShutdownRequest
RequestKeys.OffsetCommitKey commitOffset请求 OffsetCommitRequest
RequestKeys.OffsetFetchKey consumer的offset请求 OffsetFetchRequest

2.5 Processor响应数据处理

private def processNewResponses() {
var curr = requestChannel.receiveResponse(id)
while(curr != null) {
val key = curr.request.requestKey.asInstanceOf[SelectionKey]
curr.responseAction match {
case RequestChannel.SendAction => {
key.interestOps(SelectionKey.OP_WRITE)
key.attach(curr)
}
}
curr = requestChannel.receiveResponse(id)
}
}

我们回到Processor线程类中,processNewRequest()方法是发送请求,那么会调用processNewResponses()来处理Handler提供给客户端的Response,把requestChannel中responseQueue的Response取出来,注册OP_WRITE事件,将数据返回给客户端。

【转】跟我学Kafka之NIO通信机制的更多相关文章

  1. Kafka 0.8 NIO通信机制

    一.Kafka通信机制的整体结构 同时,这也是SEDA多线程模型. 对于broker来说,客户端连接数量有限,不会频繁新建大量连接.因此一个Acceptor thread线程处理新建连接绰绰有余. K ...

  2. Kafka网络模型和通信流程剖析

    1.概述 最近有同学在学习Kafka的网络通信这块内容时遇到一些疑问,关于网络模型和通信流程的相关内容,这里笔者将通过这篇博客为大家来剖析一下这部分内容. 2.内容 Kafka系统作为一个Messag ...

  3. Java网络编程和NIO详解1:JAVA 中原生的 socket 通信机制

    Java网络编程和NIO详解1:JAVA 中原生的 socket 通信机制 JAVA 中原生的 socket 通信机制 摘要:本文属于原创,欢迎转载,转载请保留出处:https://github.co ...

  4. kafka 数据一致性-leader,follower机制与zookeeper的区别;

    我写了另一篇zookeeper选举机制的,可以参考:zookeeper 负载均衡 核心机制 包含ZAB协议(滴滴,阿里面试) 一.zookeeper 与kafka保持数据一致性的不同点: (1)zoo ...

  5. kafka Poll轮询机制与消费者组的重平衡分区策略剖析

    注意本文采用最新版本进行Kafka的内核原理剖析,新版本每一个Consumer通过独立的线程,来管理多个Socket连接,即同时与多个broker通信实现消息的并行读取.这就是新版的技术革新.类似于L ...

  6. Python并发编程之线程消息通信机制任务协调(四)

    大家好,并发编程 进入第四篇. 本文目录 前言 Event事件 Condition Queue队列 总结 . 前言 前面我已经向大家介绍了,如何使用创建线程,启动线程.相信大家都会有这样一个想法,线程 ...

  7. 大数据处理框架之Strom: Storm拓扑的并行机制和通信机制

    一.并行机制 Storm的并行度 ,通过提高并行度可以提高storm程序的计算能力. 1.组件关系:Supervisor node物理节点,可以运行1到多个worker,不能超过supervisor. ...

  8. Kafka消费与心跳机制

    1.概述 最近有同学咨询Kafka的消费和心跳机制,今天笔者将通过这篇博客来逐一介绍这些内容. 2.内容 2.1 Kafka消费 首先,我们来看看消费.Kafka提供了非常简单的消费API,使用者只需 ...

  9. .Net中Remoting通信机制简单实例

    .Net中Remoting通信机制 前言: 本程序例子实现一个简单的Remoting通信案例 本程序采用语言:c# 编译工具:vs2013工程文件 编译环境:.net 4.0 程序模块: Test测试 ...

随机推荐

  1. python学习笔记10(Python的内存管理)

      用这张图激励一下自己,身边也就只有一位全栈数据工程师!!! 32. Python的内存管理 1. 对象的内存使用 对于整型和短字符串对象,一般内存中只有一个存储,多次引用.其他的长字符串和其他对象 ...

  2. java高新技术-泛型

    1.体验泛型 泛型是提供给javac编译器使用的,可以限定集合中的输入类型,让编译器挡住源程序中的非法输入,编译器编译带类型说明的集合时去除掉"类型"信息,使程序运行小效率不受影响 ...

  3. scales小谈grunt

    Grunt是基于Node.js的项目构建工具.它可以自动运行你所设定的任务.Grunt拥有数量庞大的插件,几乎任何你所要做的事情都可以用Grunt实现. 一头野猪映入眼帘,意:咕噜声 中文网站:htt ...

  4. 【BZOJ-3033】太鼓达人 欧拉图 + 暴搜

    3033: 太鼓达人 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 204  Solved: 154[Submit][Status][Discuss] ...

  5. BZOJ1010 [HNOI2008]玩具装箱toy

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000作者博客:http://www.cnblogs.com/ljh2000-jump/转 ...

  6. 如何自己编写一个easyui插件续

    接着如何自己编写一个easyui插件继续分享一下如何从上一节写的“hello”插件继承出一个“hello2”. 参考了combobox的源码中继承combo,当然我这个简单很多了.都是根据自己的理解来 ...

  7. AngularJs angular.forEach、angular.extend

    angular.forEach 调用迭代器函数取每一项目标的集合,它可以是一个对象或数组.迭代器函数与迭代器(value.key)一起调用,其中值是一个对象属性或数组元素的值,而数组元素是对象属性的关 ...

  8. FZU xxx游戏(拓扑排序+暴力)

    xxx游戏 Time Limit: 1000MS     Memory Limit: 32768 KB Description 小M最近很喜欢玩XXX游戏.这个游戏很简单,仅由3个场景(分别为1.2. ...

  9. C++ Virtual

    摘自:http://www.cnblogs.com/xd502djj/archive/2010/09/22/1832912.html namespace QCAR { /// Area is the ...

  10. css中 Span 元素的 width 属性无效果原因及多种解决方案

    先运行下程序看下: <span style='width:300px;'>123</span> 输出:123 可以看到 span会自动根据包含的内容来变化宽度 这是因为:对于内 ...