#coding:utf-8

# from python.Lib.packages.sklearn.tree import DecisionTreeClassifier
# from python.Lib.packages.matplotlib.pyplot import *
# from python.Lib.packages.sklearn.cross_validation import train_test_split
# from python.Lib.packages.sklearn.ensemble import RandomForestClassifier
# from python.Lib.packages.sklearn.externals.joblib import Parallel,delayed
# from python.Lib.packages.sklearn.tree import export_graphviz
# from python.Lib.packages.sklearn.datasets import load_iris
# import python.Lib.packages.pandas as pd from sklearn.tree import DecisionTreeClassifier
from matplotlib.pyplot import *
from sklearn.cross_validation import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.externals.joblib import Parallel,delayed
from sklearn.tree import export_graphviz
from sklearn.datasets import load_iris
import pandas as pd def RandomForest(dir):
# final = open('F:/test/final.dat' , 'r')
data=pd.read_csv(dir)
# data = [line.strip().split('\t') for line in final]
feature=data[[i for i in range(8)]].values
target=data[[8]].values
# target1=[target[0][i] for i in range(len(target[0]))]
# print feature
# print target
# feature = [[float(x) for x in row[3:]] for row in data]
# target = [int(row[0]) for row in data] #拆分训练集和测试集
# iris=load_iris()
#
# feature=iris.data
# target=iris.target
# print iris['target'].shape
feature_train, feature_test, target_train, target_test = train_test_split(feature, target, test_size=0.1, random_state=42) #分类型决策树
clf = RandomForestClassifier() #训练模型
s = clf.fit(feature_train,target_train)
print s #评估模型准确率
r = clf.score(feature_test , target_test)
print r print u'判定结果:%s' % clf.predict(feature_test[0])
#print clf.predict_proba(feature_test[0]) print u'所有的树:%s' % clf.estimators_ print clf.classes_
print clf.n_classes_ print u'各feature的重要性:%s' % clf.feature_importances_
if __name__=="__main__":
dir="Carseats.csv"
RandomForest(dir)

Python随机森林算法的使用的更多相关文章

  1. H2O中的随机森林算法介绍及其项目实战(python实现)

    H2O中的随机森林算法介绍及其项目实战(python实现) 包的引入:from h2o.estimators.random_forest import H2ORandomForestEstimator ...

  2. 用Python实现随机森林算法,深度学习

    用Python实现随机森林算法,深度学习 拥有高方差使得决策树(secision tress)在处理特定训练数据集时其结果显得相对脆弱.bagging(bootstrap aggregating 的缩 ...

  3. Python机器学习笔记——随机森林算法

    随机森林算法的理论知识 随机森林是一种有监督学习算法,是以决策树为基学习器的集成学习算法.随机森林非常简单,易于实现,计算开销也很小,但是它在分类和回归上表现出非常惊人的性能,因此,随机森林被誉为“代 ...

  4. 随机森林算法demo python spark

    关键参数 最重要的,常常需要调试以提高算法效果的有两个参数:numTrees,maxDepth. numTrees(决策树的个数):增加决策树的个数会降低预测结果的方差,这样在测试时会有更高的accu ...

  5. 随机森林算法OOB_SCORE最佳特征选择

    RandomForest算法(有监督学习),可以根据输入数据,选择最佳特征组合,减少特征冗余:原理:由于随机决策树生成过程采用的Boostrap,所以在一棵树的生成过程并不会使用所有的样本,未使用的样 ...

  6. Spark mllib 随机森林算法的简单应用(附代码)

    此前用自己实现的随机森林算法,应用在titanic生还者预测的数据集上.事实上,有很多开源的算法包供我们使用.无论是本地的机器学习算法包sklearn 还是分布式的spark mllib,都是非常不错 ...

  7. Bagging与随机森林算法原理小结

    在集成学习原理小结中,我们讲到了集成学习有两个流派,一个是boosting派系,它的特点是各个弱学习器之间有依赖关系.另一种是bagging流派,它的特点是各个弱学习器之间没有依赖关系,可以并行拟合. ...

  8. R语言︱决策树族——随机森林算法

    每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 笔者寄语:有一篇<有监督学习选择深度学习 ...

  9. R语言︱机器学习模型评估方案(以随机森林算法为例)

    笔者寄语:本文中大多内容来自<数据挖掘之道>,本文为读书笔记.在刚刚接触机器学习的时候,觉得在监督学习之后,做一个混淆矩阵就已经足够,但是完整的机器学习解决方案并不会如此草率.需要完整的评 ...

随机推荐

  1. PHP聊天室框架

    内容和教程可以在这个网址查看 http://www.workerman.net/workerman-chat

  2. KO+bootstrap 模态窗全选绑定

    HTML <div id="modalAreaID01"> <button type="button" class="btn btn ...

  3. asp.net 网站访问变慢

    资料一 单个网站解决方法:   把应用程序池回收时间缩短到300-600分钟,其间回收过程中,需要占用一点CPU资源,没办法,为了稳定性,再把回收时间设为凌晨5点. 多网站解决方法: 视服务器网站的多 ...

  4. js计算日期之间的月份差

    <script type="text/javascript"> getMonthBetween("2015-05-01","2016-05 ...

  5. Unity3D外包

    北京动点软件长年承接Unity3D(U3D外包)项目,我们制作各类型VR/AR游戏,虚拟现实,增强现实项目! 品质保证,售后完备. 联系请加QQ:372900288  电话:13911652504 我 ...

  6. phpnow修改默认站点根目录的方法

    本文转载自:http://blog.csdn.net/andy_eeipla/article/details/7832082 对于phpnow,经测试,修改Apache-20\conf\extra\h ...

  7. R中,去掉dataframe中的NA行

    R中使用complete.cases 和 na.omit来去掉包含NA的行 现在有个一data.frame  datafile如下所示 Date        sulfate nitrate ID 1 ...

  8. BigDecimal 的roundMode 舍位模式

    roundMode是指舍位时候的模式,传参数的时候用BigDecimal.ROUND_XXXX_XXX,   有: 以下例子是setScale(0,BigDecimal.ROUND_XXXX_XXX) ...

  9. flex loaderInfo为null在creationComplete事件中

    原文: http://yunzhongxia.iteye.com/blog/1152670   Flex4中application变为FlexGlobals.topLevelApplication,很 ...

  10. Django views 中 View decorators

    decorators(装饰器) 1. require_http_methods 在django.views.decorators.http中,可以用来限制请求的权限. require_http_met ...