看到“你必须用低于你上次购买它的价格购买它”,有没有想到什么?没错,又是LIS,倒过来的LIS,所以我们只要把读入的序列倒过来就可以求LIS了,第一问解决。

首先要厘清的是,对于这一题第二问貌似用\(nlog_{2}n\)的算法不是很好,因为我们需要序列中每一个位置可以接成LIS的长度。再看看数据范围,会发现\(n^2\)完全可做。仔细想一想,不难发现第二问其实也是个\(DP\):若\(f[i]\)表示以\(i\)位置为结尾的LIS的长度,\(c[i]\)表示序列\(1\)~\(i\)位置按照最优选择的方案数,则状态转移方程\(c[i]=\sum\limits_{1\leqslant j<i,a[i]>a[j],f[i]=f[j]+1}c[j]\),同时还要去重\(c[i]-=\sum\limits_{1\leqslant j<i,a[i]=a[j],f[i]=f[j]}c[j]\)。

代码

``` cpp
#include
#include

using namespace std;

const int N = 5005;

int n, a[N], f[N], c[N], ans1, ans2;

int main() {

ios_base::sync_with_stdio(false);

cin.tie(0);

cin >> n;

for(int i = 1; i <= n; i++) cin >> a[n+1-i];

for(int i = 1; i <= n; i++) { \常规n^2解法

f[i] = 1;

for(int j = 1; j < i; j++)

if(a[i]>a[j]) f[i] = max(f[i], f[j]+1);

ans1 = max(ans1, f[i]);

}

for(int i = 1; i <= n; i++) {

if(f[i] == 1) c[i] = 1; \初始化

for(int j = 1; j < i; j++) {

if(f[i] == f[j] && a[i] == a[j]) c[i] -= c[j]; \去重

if(f[i] == f[j]+1 && a[i] > a[j]) c[i] += c[j]; \状态转移

}

}

for(int i = 1; i <= n; i++)

if(f[i] == ans1) ans2 += c[i]; \统计答案

cout << ans1 << " " << ans2;

return 0;

}

洛谷P1108 低价购买题解的更多相关文章

  1. 洛谷 P1108 低价购买

    P1108 低价购买 标签 动态规划 难度 提高+/省选- 题目描述 "低价购买"这条建议是在奶牛股票市场取得成功的一半规则.要想被认为是伟大的投资者,你必须遵循以下的问题建议:& ...

  2. 洛谷 P1108 低价购买 解题报告

    P1108 低价购买 题目描述 "低价购买"这条建议是在奶牛股票市场取得成功的一半规则.要想被认为是伟大的投资者,你必须遵循以下的问题建议:"低价购买:再低价购买&quo ...

  3. 洛谷P1108 低价购买[DP | LIS方案数]

    题目描述 “低价购买”这条建议是在奶牛股票市场取得成功的一半规则.要想被认为是伟大的投资者,你必须遵循以下的问题建议:“低价购买:再低价购买”.每次你购买一支股票,你必须用低于你上次购买它的价格购买它 ...

  4. 洛谷P1108 低价购买

    题目描述 “低价购买”这条建议是在奶牛股票市场取得成功的一半规则.要想被认为是伟大的投资者,你必须遵循以下的问题建议:“低价购买:再低价购买”.每次你购买一支股票,你必须用低于你上次购买它的价格购买它 ...

  5. 洛谷P1108 低价购买 (最长下降子序列方案数)(int,long long等 范围)

    这道题用n方的算法会很好做 我一开始想的是nlogn的算法求方案数, 然后没有什么想法(实际上也可以做,但是我太弱了)我们就可以根据转移方程来推方案数,只是把max改成加,很多动规题 都是这样,比如背 ...

  6. 洛谷 P1108 低价购买(LIS,统计方案数)

    传送门 解题思路 看第一个要求,很显然是求最长下降子序列,和LIS几乎一样,很简单,再看第二个问号,求最长下降子序列的方案数??这怎么求? 注意:当二种方案“看起来一样”时(就是说它们构成的价格队列一 ...

  7. 洛谷P2832 行路难 分析+题解代码【玄学最短路】

    洛谷P2832 行路难 分析+题解代码[玄学最短路] 题目背景: 小X来到了山区,领略山林之乐.在他乐以忘忧之时,他突然发现,开学迫在眉睫 题目描述: 山区有n座山.山之间有m条羊肠小道,每条连接两座 ...

  8. 【洛谷P3960】列队题解

    [洛谷P3960]列队题解 题目链接 题意: Sylvia 是一个热爱学习的女孩子. 前段时间,Sylvia 参加了学校的军训.众所周知,军训的时候需要站方阵. Sylvia 所在的方阵中有 n×m ...

  9. 洛谷 P2616 [USACO10JAN]购买饲料II Buying Feed, II

    洛谷 P2616 [USACO10JAN]购买饲料II Buying Feed, II https://www.luogu.org/problemnew/show/P2616 题目描述 Farmer ...

随机推荐

  1. Git在商业项目中的使用流程

    一 引言 这一篇文章还是记录我在杭州工作的总结. 我刚来公司的时候,对Git的使用很头痛,因为在学校里面很少用这个东西,即使用,一般也只有一个分支,不会出现代码冲突和代码合并的情况.但是公司里面一个项 ...

  2. ASP.NET Zero--解决方案结构(层)

    解决方案结构(层) 创建和下载项目后,您将具有如下所示的解决方案结构: 解决方案有8个项目: Core项目包含域层类(如 实体 和 域服务). Application项目包含应用程序逻辑(如应用程序服 ...

  3. windows搭建golang环境

    由于墙的存在,很多网址无法下载,推荐https://studygolang.com/dl去下载. windows需要配置几个环境变量,我是下载的压缩文件,所以需要自己配置,通过安装程序安装的应该不需要 ...

  4. python3 Counter类(计数器)

    Counter(计数器):用于追踪值的出现次数 Counter类继承dict类,所以它能使用dict类里面的方法 创建一个Counter类 import collections obj = colle ...

  5. [转] Linux Asynchronous I/O Explained

    Linux Asynchronous I/O Explained (Last updated: 13 Apr 2012) *************************************** ...

  6. docker容器日志收集方案汇总评价总结

    docker日志收集方案有太多,下面截图罗列docker官方给的日志收集方案(详细请转docker官方文档).很多方案都不适合我们下面的系列文章没有说. 经过以下5篇博客的叙述简单说下docker容器 ...

  7. 初学Django项目可能会遇到的问题

    1. 出现莫名其妙的 app01 我项目中的app名字并不是app01,可是运行python manage.py makemigrations的时候总是提示app01不是已安装的app Applyin ...

  8. golang web实战之一(beego,mvc postgresql)

    想写个小网站,听说MVC过时了,流行MVVM,但是看了一下gin+vue+axios方式,发现还有一堆知识点要掌握,尤其是不喜欢nodejs和javascript方式的写法.算了,还是用beego来写 ...

  9. odoo中def init(self):

    # -*- coding: utf-8 -*- # Part of Odoo. See LICENSE file for full copyright and licensing details. f ...

  10. SpringBoot系列十:SpringBoot整合Redis

    声明:本文来源于MLDN培训视频的课堂笔记,写在这里只是为了方便查阅. 1.概念:SpringBoot 整合 Redis 2.背景 Redis 的数据库的整合在 java 里面提供的官方工具包:jed ...