对于每个节点v,记录anc[v][k],表示从它向上走2k步后到达的节点(如果越过了根节点,那么anc[v][k]就是根节点)。

dfs函数对树进行的dfs,先求出anc[v][0],再利用anc[v][k] = anc[anc[v][k - 1]][k - 1]  (从v向上2k步即为从v向上2(k - 1)步再向上2(k - 1)步)

求出其他anc[v][k]的值

lca(u, v)函数寻找u和v的lca, 首先把u和v调整到一个高度。如果此时u和v重合,那么这就是我们要找的lca,如果他们补充和,就不断的寻找一个最小的k,使得

anc[u][k] = anc[v][k]

int anc[maxn][], deep[maxn];

int dfs(int u, int fa)
{
for(int i = ; i < ; i++)
anc[u][i] = anc[anc[u][i - ]][i - ];
for(int i = head2[u]; i != -; i = Edge[i].next)
{
int v = Edge[i].v;
if(v == fa || deep[v]) continue;
anc[v][] = u;
deep[v] = deep[u] + ;
dfs(v, u);
}
} int lca(int u, int v)
{
if(deep[u] < deep[v]) swap(u, v);
for(int i = - ; i >= ; i--)
if(deep[anc[u][i]] >= deep[v])
u = anc[u][i]; for(int i = - ; i >= ; i--)
{
if(anc[u][i] != anc[v][i])
{
u = anc[u][i];
v = anc[v][i];
}
}
if(u == v) return u;
return anc[u][];
}

tarjan求lca

1.任选一个点为根节点,从根节点开始。

2.遍历该点u所有子节点v,并标记这些子节点v已被访问过。

3.若是v还有子节点,返回2,否则下一步。

4.合并v到u上。

5.寻找与当前点u有询问关系的点v。

合并就用并查集就好了

板子先欠着

      6.若是v已经被访问过了,则可以确认u和v的最近公共祖先为v被合并到的父亲节点a。

倍增\ tarjan求lca的更多相关文章

  1. 倍增 Tarjan 求LCA

                                                                                                         ...

  2. 图论分支-倍增Tarjan求LCA

    LCA,最近公共祖先,这是树上最常用的算法之一,因为它可以求距离,也可以求路径等等 LCA有两种写法,一种是倍增思想,另一种是Tarjan求法,我们可以通过一道题来看一看, 题目描述 欢乐岛上有个非常 ...

  3. Tarjan求LCA

    LCA问题算是一类比较经典的树上的问题 做法比较多样 比如说暴力啊,倍增啊等等 今天在这里给大家讲一下tarjan算法! tarjan求LCA是一种稳定高速的算法 时间复杂度能做到预处理O(n + m ...

  4. 详解使用 Tarjan 求 LCA 问题(图解)

    LCA问题有多种求法,例如倍增,Tarjan. 本篇博文讲解如何使用Tarjan求LCA. 如果你还不知道什么是LCA,没关系,本文会详细解释. 在本文中,因为我懒为方便理解,使用二叉树进行示范. L ...

  5. tarjan求lca的神奇

    题目描述 如题,给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 输入输出格式 输入格式: 第一行包含三个正整数N.M.S,分别表示树的结点个数.询问的个数和树根结点的序号. 接下来N-1行每 ...

  6. 【Tarjan】洛谷P3379 Tarjan求LCA

    题目描述 如题,给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 输入输出格式 输入格式: 第一行包含三个正整数N.M.S,分别表示树的结点个数.询问的个数和树根结点的序号. 接下来N-1行每 ...

  7. HDU 2586 倍增法求lca

    How far away ? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)To ...

  8. SPOJ 3978 Distance Query(tarjan求LCA)

    The traffic network in a country consists of N cities (labeled with integers from 1 to N) and N-1 ro ...

  9. 倍增法求LCA

    倍增法求LCA LCA(Least Common Ancestors)的意思是最近公共祖先,即在一棵树中,找出两节点最近的公共祖先. 倍增法是通过一个数组来实现直接找到一个节点的某个祖先,这样我们就可 ...

随机推荐

  1. vue 路由的使用

    ue-router是Vue.js官方的路由插件,它和vue.js是深度集成的,适合用于构建单页面应用.vue的单页面应用是基于路由和组件的,路由用于设定访问路径,并将路径和组件映射起来.传统的页面应用 ...

  2. 为什么我觉得Python烂的要死?

    为什么我觉得Python烂的要死? https://www.toutiao.com/a6636558446030225923/ 作为机器学习程序员的首选编程语言,Python成为世界范围内最受大学生欢 ...

  3. Android + https 实现 文件上传

    package com.example.wbdream.zigvine; import android.annotation.SuppressLint; import android.app.Acti ...

  4. 虚拟机安装macos 分辨率不正常修改不了,不能全屏如何解决

    1.苹果在OSX 10.11之后启动了一个System Integrity Protection (SIP),这个保护系统防止/library/preferences/systemconfigurat ...

  5. python 通过元类控制类的创建

    一.python中如何创建类? 1. 直接定义类 class A: a = 'a' 2. 通过type对象创建 在python中一切都是对象 在上面这张图中,A是我们平常在python中写的类,它可以 ...

  6. c/c++ 网络编程 使用getaddrinfo的单纯UDP 通信

    网络编程 使用getaddrinfo的单纯UDP 1,UDP发送端 2,UDP接收端 UDP发送端: #include <stdio.h> #include <unistd.h> ...

  7. Springboot项目配置druid数据库连接池,并监控统计功能

    pom.xml配置依赖 <!-- https://mvnrepository.com/artifact/com.alibaba/druid --> <dependency> & ...

  8. 【Python 15】分形树绘制3.0(递归函数)

    1.案例描述 将递归函数与循环函数结合绘制2.0的图形 2.案例分析 3.上机实验 """ 作者:梁斌 功能:五角星的绘制 版本:3.0 日期:03/08/2017 新增 ...

  9. USING KERBEROS

    https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/managing_smart_cards/u ...

  10. c# throw和throw ex

    c# throw和throw ex 我们在日常开发当中,经常会用到exception异常,并且我们会在exception中的catch块中throw exception,例如: static void ...