numpy中的广播
目录
广播的引出 numpy两个数组的相加、相减以及相乘都是对应元素之间的操作。
import numpy as np x = np.array([[2,2,3],[1,2,3]])
y = np.array([[1,1,3],[2,2,4]])
print(x*y) #numpy当中的数组相乘是对应元素的乘积,与线性代数当中的矩阵相乘不一样 输入结果如下:
'''
[[ 2 2 9]
[ 2 4 12]]
'''
当两个数组的形状并不相同的时候,我们可以通过扩展数组的方法来实现相加、相减、相乘等操作,这种机制叫做广播(broadcasting)。
比如,一个二维数组减去列平均值,来对数组的每一列进行距平化处理:
import numpy as np arr = np.random.randn(4,3) #shape(4,3)
arr_mean = arr.mean(0) #shape(3,)
demeaned = arr -arr_mean
很明显上式arr和arr_mean维度并不形同,但是它们可以进行相减操作,这就是通过广播机制来实现的。
广播的原则
广播的原则:如果两个数组的后缘维度(trailing dimension,即从末尾开始算起的维度)的轴长度相符,或其中的一方的长度为1,则认为它们是广播兼容的。广播会在缺失和(或)长度为1的维度上进行。
这句话乃是理解广播的核心。广播主要发生在两种情况,一种是两个数组的维数不相等,但是它们的后缘维度的轴长相符,另外一种是有一方的长度为1。
数组维度不同,后缘维度的轴长相符
我们来看一个例子:
import numpy as np arr1 = np.array([[0, 0, 0],[1, 1, 1],[2, 2, 2], [3, 3, 3]]) #arr1.shape = (4,3)
arr2 = np.array([1, 2, 3]) #arr2.shape = (3,)
arr_sum = arr1 + arr2
print(arr_sum) 输入结果如下:
'''
[[1 2 3]
[2 3 4]
[3 4 5]
[4 5 6]]
'''
上例中arr1的shape为(4,3),arr2的shape为(3,)。可以说前者是二维的,而后者是一维的。但是它们的后缘维度相等,arr1的第二维长度为3,和arr2的维度相同。arr1和arr2的shape并不一样,但是它们可以执行相加操作,这就是通过广播完成的,在这个例子当中是将arr2沿着0轴进行扩展。
上面程序当中的广播如下图所示:

同样的例子还有:

从上面的图可以看到,(3,4,2)和(4,2)的维度是不相同的,前者为3维,后者为2维。但是它们后缘维度的轴长相同,都为(4,2),所以可以沿着0轴进行广播。
同样,还有一些例子:(4,2,3)和(2,3)是兼容的,(4,2,3)还和(3)是兼容的,后者需要在两个轴上面进行扩展。
数组维度相同,其中有个轴为1
我们来看下面的例子:
import numpy as np arr1 = np.array([[0, 0, 0],[1, 1, 1],[2, 2, 2], [3, 3, 3]]) #arr1.shape = (4,3)
arr2 = np.array([[1],[2],[3],[4]]) #arr2.shape = (4, 1) arr_sum = arr1 + arr2
print(arr_sum) 输出结果如下:
[[1 1 1]
[3 3 3]
[5 5 5]
[7 7 7]]
arr1的shape为(4,3),arr2的shape为(4,1),它们都是二维的,但是第二个数组在1轴上的长度为1,所以,可以在1轴上面进行广播,如下图所示:
 
在这种情况下,两个数组的维度要保证相等,其中有一个轴的长度为1,这样就会沿着长度为1的轴进行扩展。这样的例子还有:(4,6)和(1,6) 。(3,5,6)和(1,5,6)、(3,1,6)、(3,5,1),后面三个分别会沿着0轴,1轴,2轴进行广播。
后话:还有上面两种结合的情况,如(3,5,6)和(1,6)是可以相加的。在TensorFlow当中计算张量的时候也是用广播机制,并且和numpy的广播机制是一样的。
参考:
《利用python进行数据分析》 第十一章 广播 本书的图片和广播的原则的描述都来自本书
看完这篇文章后,下面这篇文章的中的疑问也就迎刃而解了。
https://www.cnblogs.com/yangmang/p/7125458.html
numpy数组的广播功能强大,但是也同时让人疑惑不解,现在让我们来谈谈其中的原理。
广播原则:
如果两个数组的后缘维度(即:从末尾开始算起的维度)的轴长相符或其中一方的长度为1,则认为它们是广播兼容的,广播会在缺失和(或)长度为1的轴上进行.
上面的原则很重要,是广播的指导思想,下面我们来看看例子。
1.其实在最简单的数组与标量数字之间的运算就存在广播,只是我们把它看作理所当然了。

2.再看下一个例子,这个大家都会一致认为这是广播了

根据广播原则:arr1的shape为(4,1),arr2的shape为(3,),所以会同时在两个轴发生广播,arr1的shape变成(4,3),而arr2的shape变成(4,3),所以结果也为(4,3).
其实代码中发生了下图描述的事情:

3.同理,我们可以得到三维数组的广播情况

根据广播原则分析:arr1的shape为(3,4,2),arr2的shape为(4,2),它们的后缘轴长度都为(4,2),所以可以在0轴进行广播,arr2的shape变为(3,4,2).
下面说明一下三维数组在各维度的广播形状需求:

以上所有形状都可以发生广播,你可以用我们开篇所说的广播原则进行验证。
最后,再来说一个易错的实际例子。

arr减去他在1轴上的平均值,会出错?看看为啥。
因为arr.mean(1)产生的shape为(4,),根据广播原则,较小的数组的后缘维度必须为1,
所以需要将arr.mean变成(4,1),你所期望的结果如下:

numpy中的广播的更多相关文章
- Numpy中的广播机制,数组的广播机制(Broadcasting)
		
这篇文章把numpy中的广播机制讲的十分透彻: https://jakevdp.github.io/PythonDataScienceHandbook/02.05-computation-on-arr ...
 - numpy中的广播机制
		
广播的引出 numpy两个数组的相加.相减以及相乘都是对应元素之间的操作. import numpy as np x = np.array([[2,2,3],[1,2,3]]) y = np.arra ...
 - Numpy中的广播原则(机制)
		
为了了解这个原则,首先我们来看一组例子: # 数组直接对一个数进行加减乘除,产生的结果是数组中的每个元素都会加减乘除这个数. In [12]: import numpy as np In [13]: ...
 - numpy中的广播(Broadcasting)
		
Numpy的Universal functions 中要求输入的数组shape是一致的,当数组的shape不相等的时候,则会使用广播机制,调整数组使得shape一样,满足规则,则可以运算,否则就出错 ...
 - Numpy中数组的乘法
		
Numpy中数组的乘法 按照两个相乘数组A和B的维度不同,分为以下乘法: 数字与一维/二维数组相乘: 一维数组与一维数组相乘: 二维数组与一维数组相乘: 二维数组与二维数组相乘: numpy有以下乘法 ...
 - Numpy中重要的广播概念
		
Numpy中重要的广播概念 广播:简单理解为用于不同大小数组的二元通用函数(加.减.乘等)的一组规则 广播的规则: 如果两个数组的维度数dim不相同,那么小维度数组的形状将会在左边补1 如果shape ...
 - 吴恩达深度学习:python中的广播
		
1.python中的广播: (1)广播是一种手段,可以让python代码执行得更快,我们来看看python实际如何执行. 下面矩阵列出了100克苹果.牛肉.鸡蛋和蛋白质中含有的碳水化合物.蛋白质和脂肪 ...
 - NumPy中文文档搬砖(划掉)学习笔记(1)
		
原文地址 前言 况下加速Python中的操作运行时.适用于快速数值运算的一个选项是NumPy,它当之无愧地将自己称为使用Python进行科学计算的基本软件包. 当然,很少有人将50微秒(百万分之五十秒 ...
 - NumPy之:理解广播
		
目录 简介 基础广播 广播规则 简介 广播描述的是NumPy如何计算不同形状的数组之间的运算.如果是较大的矩阵和较小的矩阵进行运算的话,较小的矩阵就会被广播,从而保证运算的正确进行. 本文将会以具体的 ...
 
随机推荐
- C#设计模式(16)——中介者模式
			
1.中介者模式介绍 中介者模式,定义了一个中介对象来封装一系列对象之间的交互关系,中介者使各个对象之间不需要显式地相互引用,从而降低耦合性.在开发中我们会遇到各个对象相互引用的情况,每个对象都可以和多 ...
 - [Android] Android RxJava2+Retrofit2+OkHttp3 的使用
			
[Android] Android RxJava2+Retrofit2+OkHttp3 简单介绍Retrofit.OKHttp和RxJava之间的关系: Retrofit:Retrofit是Squar ...
 - [再寄小读者之数学篇](2014-06-22 积分不等式 [中国科学技术大学2012年高等数学B考研试题])
			
函数 $f(x)$ 在 $[0,1]$ 上单调减, 证明: 对于任何 $\al\in (0,1)$, $$\bex \int_0^\al f(x)\rd x\geq \al \int_0^1 f(x) ...
 - 锁定表头和固定列(Fixed table head and columns)
			
源码: /// <summary> /// 锁定表头和列 /// <para> sorex.cnblogs.com </para> /// </summary ...
 - python 模块 wmi 远程连接 windows 获取配置信息
			
测试工具应用: https://ask.csdn.net/questions/247013 wmi连接不上报错问题集 https://blog.csdn.net/xcntime/article/det ...
 - maven 分隔环境
			
在pom.xml 上 添加 把要分隔的环境 文件 弄成这样 打包 mvn clean package -Dmaven.test.skip=true -P+环境名 例子:mvn clean packag ...
 - 简单使用Markdown
			
Markdown是一种纯文本格式的标记语言.通过简单的标记语法,它可以使普通文本内容具有一定的格式. 相比WYSIWYG编辑器 优点: 1.因为是纯文本,所以只要支持Markdown的地方都能获得一样 ...
 - 【easy】104. Maximum Depth of Binary Tree 求二叉树的最大深度
			
求二叉树的最大深度 /** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *left; ...
 - 【原创】大数据基础之词频统计Word Count
			
对文件进行词频统计,是一个大数据领域的hello word级别的应用,来看下实现有多简单: 1 Linux单机处理 egrep -o "\b[[:alpha:]]+\b" test ...
 - js——图片懒加载
			
<img class="js-lazy-image centered" src="./img/dog-running.svg" width="4 ...