[物理学与PDEs]第3章第2节 磁流体力学方程组 2.1 考虑到导电媒质 (等离子体) 的运动对 Maxwell 方程组的修正
1. Maxwell 方程组 $$\bee\label{3_2_1_Maxwell} \bea \Div{\bf D}&=\rho_f,\\ \rot{\bf E}&=-\cfrac{\p {\bf B}}{\p t},\\ \Div{\bf B}&=0,\\ \rot{\bf H}&=\cfrac{\p {\bf D}}{\p t}+{\bf j}_f, \eea \eee$$ 其中 ${\bf D}=\ve {\bf E}$, ${\bf B}=\mu{\bf H}$, $$\bex {\bf j}_f=\sigma({\bf E}+{\bf u}\times{\bf B}) =\sigma({\bf E}+\mu_0{\bf u}\times{\bf H}). \eex$$
2. 由于等离子体是良导体, $\sigma\gg 1$, 而 $\eqref{3_2_1_Maxwell}_4$ 中 $\cfrac{\p {\bf D}}{\p t}$ 可忽略, 成为 $$\bee\label{3_2_1_Maxwell_4} \rot{\bf H}=\sigma({\bf E}+\mu_0{\bf u}\times{\bf H}). \eee$$
3. 等离子体中, $E\ll H$, 故只考虑 ${\bf H}$ 的运动 (消去 ${\bf E}$): $$\beex \bea &\quad {\bf E}=\cfrac{1}{\sigma}\rot{\bf H}-\mu_0{\bf u}\times{\bf H}\\ &\ra \cfrac{\p {\bf H}}{\p t} =-\cfrac{1}{\sigma\mu_0}\rot\rot{\bf H}+\rot({\bf u}\times{\bf H})\quad(\eqref{3_2_1_Maxwell}_2)\\ &\quad\quad\quad\ =\cfrac{1}{\sigma \mu_0}\lap{\bf H} +\rot({\bf u}\times{\bf H}). \eea \eeex$$
[物理学与PDEs]第3章第2节 磁流体力学方程组 2.1 考虑到导电媒质 (等离子体) 的运动对 Maxwell 方程组的修正的更多相关文章
- [物理学与PDEs]第3章第4节 磁流体力学方程组的数学结构
1. 在流体存在粘性.热传导及 $\sigma\neq \infty$ 时, 磁流体力学方程组是一个拟线性对称双曲 - 抛物耦合组. 2. 在流体存在粘性.热传导但 $\sigma=\infty$ ...
- [物理学与PDEs]第3章第2节 磁流体力学方程组 2.4 不可压情形的磁流体力学方程组
不可压情形的磁流体力学方程组 $$\beex \bea \cfrac{\rd {\bf H}}{\rd t}-({\bf H}\cdot\n){\bf u}&=\cfrac{1}{\sigma ...
- [物理学与PDEs]第3章第2节 磁流体力学方程组 2.3 磁流体力学方程组
1. 磁流体力学方程组 $$\beex \bea \cfrac{\p {\bf H}}{\p t} &-\rot({\bf u}\times{\bf H})=\cfrac{1}{\sigma ...
- [物理学与PDEs]第3章第2节 磁流体力学方程组 2.2 考虑到电磁场的存在对流体力学方程组的修正
1. 连续性方程 $$\bex \cfrac{\p \rho}{\p t}+\Div(\rho{\bf u})=0. \eex$$ 2. 动量守恒方程 $$\bex \cfrac{\p }{\p ...
- [物理学与PDEs]第5章第1节 引言
1. 弹性力学是研究弹性体在荷载的作用下, 其内力 (应力) 和变形所满足的规律的学科. 2. 荷载主要有两种, 一是作用在弹性体上的机械力 (本章讨论); 二是由温度等各种能导致弹性体变形的物理 ...
- [物理学与PDEs]第4章第1节 引言
1. 本章讨论可燃流体在流动过程中同时伴随着燃烧现象的情况. 2. 燃烧有两种, 一种是爆燃 (deflagration): 火焰低速向前传播, 此时流体微元通常是未燃气体.已燃气体的混合物; 一 ...
- [物理学与PDEs]第5章第6节 弹性静力学方程组的定解问题
5. 6 弹性静力学方程组的定解问题 5. 6. 1 线性弹性静力学方程组 1. 线性弹性静力学方程组 $$\bee\label{5_6_1_le} -\sum_{j,k,l}a_{ijkl}\cf ...
- [物理学与PDEs]第5章第5节 弹性动力学方程组及其数学结构
5.5.1 线性弹性动力学方程组 1. 线性弹性动力学方程组 $$\beex \bea 0&=\rho_0\cfrac{\p{\bf v}}{\p t}-\Div_x{\bf P}-\r ...
- [物理学与PDEs]第5章第4节 本构方程 - 应力与变形之间的关系
5. 4 本构方程 - 应力与变形之间的关系 5.4.1. 本构关系的一般形式 1. 若 Cauchy 应力张量 ${\bf T}$ 满足 $$\bex {\bf T}({\bf y})=\hat{\ ...
随机推荐
- 如何用Nginx解决前端跨域问题?
前言 在开发静态页面时,类似Vue的应用,我们常会调用一些接口,这些接口极可能是跨域,然后浏览器就会报cross-origin问题不给调. 最简单的解决方法,就是把浏览器设为忽略安全问题,设置--di ...
- @FeignClient
@FeignClient("APP-PROVIDER")public interface MyFeignClient { @RequestMapping(value = " ...
- flex布局justify-content属性和align-items属性设置
前言: flex最常用的就是justify-content和align-items了,这里把这两个属性介绍下,大家更多关于flex布局可以查看阮一峰的日志,写的非常清楚! 阮一峰flex布局的日志:h ...
- java 项目打jar包,用cmd运行,并且编写运行脚本
项目是ideal编辑器的springboot项目的demo.打包就是在侧边栏,点击packge ,就会在target下生成jar包. 生成之后把 jar包放在一个文件夹中.新建一个txt文件,在txt ...
- Redhat7.3更换CentOS7 yum源
Redhat yum源是收费的,没有注册的Redhat机器是不能使用yum源的. 1.当前系统环境: 系统版本:Red Hat Enterprise Linux Server release 7.3 ...
- springboot+mybatis+pagehelper
springboot+mybatis+pagehelper整合 springboot 版本2.1.2.RELEASE mybatis 版本3.5 pagehelper 版本5.18 支持在map ...
- Android开发欢迎页点击跳过倒计时进入主页
没点击跳过自然进入主页,点击跳过之后立即进入主页 1.欢迎页布局activity_sp.xml放一张背景图(图片随你便啦)再放一个盛放倒计时的TextView <?xml versi ...
- NetSec2019 20165327 Exp7 网络欺诈防范
NetSec2019 Exp7 网络欺诈防范 一.本实践的目标理解常用网络欺诈背后的原理,以提高防范意识,并提出具体防范方法.具体实践有 (1)简单应用SET工具建立冒名网站 (1分) (2)ette ...
- 安装软件the error code is 2203解决方法
win10安装mysql5.7的时候弹出这个2203错误,记录一下. 解决方法: 按照下面路径,去掉只读解决了.
- Redis数据结构之简单动态字符串SDS
Redis的底层数据结构非常多,其中包括SDS.ZipList.SkipList.LinkedList.HashTable.Intset等.如果你对Redis的理解还只停留在get.set的水平的话, ...