期望DP要倒着推

Luogu P4321


题意

LOJ #2542

不一定是树,询问点不一定均为1


$Solution$

设计一个巧妙的DP状态

设$ F(S,x)$表示当前在点$ x$已经走遍了$ S$,走完剩下所有点的期望步数

这样推转移$ DP$的时候一定是从$ F(S|y,y)$转移过来

容易发现$ S|y$->$S$是不可能会变大的,即这维不可能成环

因此从大到小枚举$ S$,对当前$ S$,显然比$ S$大的状态已经被计算,暴力$ n^3$高斯消元消出这维就好了

时间复杂度$ O(2·n·n^3)$

为什么不直接$ Min-Max$容斥呢

随机游走

每次枚举$ S$消出当前$ Min(S,x)$中的x这维

复杂度不变

而且很好写啊...


$ my \ code$

#include<ctime>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
#include<vector>
#define p 998244353
#define rt register int
#define ll long long
using namespace std;
inline ll read(){
ll x=;char zf=;char ch=getchar();
while(ch!='-'&&!isdigit(ch))ch=getchar();
if(ch=='-')zf=-,ch=getchar();
while(isdigit(ch))x=x*+ch-'',ch=getchar();return x*zf;
}
void write(ll y){if(y<)putchar('-'),y=-y;if(y>)write(y/);putchar(y%+);}
void writeln(const ll y){write(y);putchar('\n');}
int k,m,n,x,y,z,cnt,S;
bool link[][];int a[][],d[];
int inv[],ans[][<<];
int ksm(int x,int y=p-){
int ans=;
for(rt i=y;i;i>>=,x=1ll*x*x%p)if(i&)ans=1ll*ans*x%p;
return ans;
}
void gauss(){
for(rt i=;i<=n;i++)if(!(S>>i-&)){
for(rt j=i;j<=n;j++)if(a[j][i]){
if(j!=i)for(rt k=;k<=n+;k++)swap(a[i][k],a[j][k]);
break;
}
if(!a[i][i])continue;
inv[i]=ksm(a[i][i]);
for(rt j=i+;j<=n;j++)if(a[j][i]){
const int x=1ll*a[j][i]*inv[i]%p;
for(rt k=i;k<=n+;k++)if(a[i][k])(a[j][k]-=1ll*a[i][k]*x%p)%=p;
}
}
for(rt i=n;i>=;i--)if(!(S>>i-&)){
ans[i][S]=1ll*a[i][n+]*inv[i]%p;
for(rt j=i-;j>=;j--)if(a[j][i])(a[j][n+]-=1ll*ans[i][S]*a[j][i]%p)%=p;
}
}
int ret[][<<];
int main(){
n=read();m=read();
for(rt i=;i<=m;i++){
x=read();y=read();d[x]++;d[y]++;
link[x][y]=link[y][x]=;
}
//Max(S)走遍集合S的时间
//Min(S)第一次走到S的时间
for(S=;S<(<<n);S++){
memset(a,,sizeof(a));
for(rt i=;i<=n;i++){
if(S>>i-&)a[i][i]=;
else {
for(rt j=;j<=n;j++)if(link[i][j]&&!(S>>j-&))a[i][j]=-;
a[i][i]=d[i];a[i][n+]+=d[i];
}
}
gauss();
}
//Max(S)=sigma Min(T) (-1)|T|+1
for(rt i=;i<=n;i++){
for(rt j=;j<(<<n);j++)if(!(__builtin_popcount(j)&))ans[i][j]*=-;
for(rt j=;j<n;j++)
for(rt k=;k<(<<n);k++)if(k>>j&)(ans[i][k]+=ans[i][k^(<<j)])%=p;
}
for(rt T=read();T;T--){
n=read();S=;
for(rt i=;i<=n;i++)S|=(<<read()-);
x=read();writeln((ans[x][S]+p)%p);
}
return ;
}

Luogu P4321 随机漫游的更多相关文章

  1. luogu P4321 随机漫游 期望dp 二进制 高斯消元

    LINK:随机漫游 非常妙的一道题. 容易想到倒推期望. 设状态 f[i][j]表示到达第i个点 此时已经到达的集合为j能走到全集的期望边数. 只要求出来这个就能O(1)回答询问. \(f[i][j] ...

  2. 洛谷 P4321 【随机漫游】

    题目大意 给出\(n(n\leq 18)\)个点的无向连通图,\(m(m\leq 10^5)\)次询问.每次询问给出一个点集和一个起点\(s\),询问从\(s\)出发,经过这个点集中的每一个点至少一次 ...

  3. BZOJ 1180 [CROATIAN 2009]OTOCI // BZOJ 2843 极地旅行社 // Luogu P4321 [COCI 2009] OTOCI / 极地旅行社 (LCA板题)

    emmm-标题卡着长度上限- LCT板题-(ε=ε=ε=┏(゜ロ゜;)┛) CODE #include <cctype> #include <cmath> #include & ...

  4. 快速构建Windows 8风格应用27-漫游应用数据

    原文:快速构建Windows 8风格应用27-漫游应用数据 本篇博文主要介绍漫游应用数据概览.如何构建漫游应用数据.构建漫游应用数据最佳实践. 一.漫游应用数据概览 1.若应用当中使用了漫游应用数据, ...

  5. UWP开发:应用文件存储

    应用设置由于数据量和数据类型的限制,有很大的局限性,所以还需要应用文件存储,以文件的方式存储数据.在每个应用的应用数据存储中,该应用拥有系统定义的根目录:一个用于本地文件,一个用于漫游文件,还有一个用 ...

  6. Python编程:从入门到实践 - matplotlib篇 - Random Flow

    随机漫游 # random_flow.py 随机漫游 import random class RandomFlow(): """一个生成随机漫游数据的类"&qu ...

  7. UE4蓝图AI角色制作(三)

    接上一节 6. 寻路网格体代理 通过允许配置多个"代理",虚幻引擎使得用户能够轻松为大小各异的AI创建寻路网格体.首先,选中世界大纲视图中的"RecastNavMesh& ...

  8. UE4蓝图AI角色制作(六)之行为树

    13.行为树原理 AI最重要的环节就是行为树.我们将解释什么是行为树.为何它如此重要,以及构建行为树需要哪些元素. 借助行为树,我们可以轻松控制并显示AI的决策制定过程.行为树是一种将AI在场景中的决 ...

  9. UE4蓝图AI角色制作(七)之追逐玩家

    15.追逐玩家 现在我们的AI无法做出任何决策,它总是执行相同的决策.我们先把感知系统中的相关信息提供给AI,让AI知道如何做出决策,然后我们会修改行为树.我们首先需要创建新的黑板键,这样我们就能在行 ...

随机推荐

  1. Spring service本类中方法调用另一个方法事务不生效问题(转载)

    前些日子一朋友在需要在目标对象中进行自我调用,且需要实施相应的事务定义,且网上的一种通过BeanPostProcessor的解决方案是存在问题的.因此专门写此篇帖子分析why. 1.预备知识 aop概 ...

  2. Oracle 史上最全近百条Oracle DBA日常维护SQL脚本指令

    史上最全近百条Oracle DBA日常维护SQL脚本指令 https://mp.weixin.qq.com/s?__biz=MjM5MDAxOTk2MQ==&mid=2650281305&am ...

  3. shell 脚本中执行sql

    #!/bin/bashsql='show databases' result=`mysql -uroot -pengine2user -h127.0.0.1 -e "${sql}" ...

  4. Django create和save方法

    Django的模型(Model)的本质是类,并不是一个具体的对象(Object).当你设计好模型后,你就可以对Model进行实例化从而创建一个一个具体的对象.Django对于创建对象提供了2种不同的s ...

  5. 6-4 The present perfect

    1 Summary The present perfect is an important verb tense in English. It is used to talk about things ...

  6. C# Note37: Writing unit tests with use of mocking

    前言 What's mocking and its benefits Mocking is an integral part of unit testing. Although you can run ...

  7. SELECT list is not in GROUP BY clause and contains nonaggregated column

    报错如下: Expression # of SELECT list is not in GROUP BY clause and contains nonaggregated column ‘sss.m ...

  8. 一个".java"源文件中是否可以包括多个类

    可以有多个类,但只能有一个public的类,并且public的类名必须与文件名相一致. 现在我们编个测试文件来测试一番(一个程序员要具有用于探索的精神   -.-     手动滑稽) 1.编写一个 a ...

  9. bugku web web基础

    web基础$_GET $what=$_GET['what'];echo $what;if($what=='flag')echo 'flag{****}'; 看了这段代码知道,需要用get提交what= ...

  10. 单双通道对RTX有何影响?结果出乎意料

    此前,我们在统计RTX游戏本数据时发现了一个有趣的现象,游戏本上的RTX显卡性能出现了明显断层,具体来说就是RTX 2080的性能要远好于RTX 2080 Max-Q,两者差距幅度高达37%,详细测试 ...