通过数据压缩(降维)可以减少特征数量,可以降低硬盘和内存的存储,加快算法的训练。

还可以把高维的数据压缩成二维或三维,这样方便做数据可视化。

数据压缩是通过相似或者相关度很高的特征来生成新的特征,减少特征数量。例如,上图x1是厘米,x2是英寸,这两个特征相关度很高,可以压缩成一个特征。

======================================

主成分分析(Principal Component Analysis, PCA)是常用的降维算法。

例如,要将二维数据压缩成一维数据,需要找到一个向量,使所有样本到该向量的投影误差(projection error)最小。

PCA不是线性回归,线性回归的差值是预测值和实际值的差,PCA的差值是样本到向量的投影误差。

线性回归需要用到标签,而PCA不需要用到标签。

======================================

在使用PCA算法前需要对数据进行预处理(每一个特征的均值要为0)

首先需要计算协方差矩阵: sigma = (1/m) * X' * X

然后需要计算sigma的特征向量。 svd函数是奇异值分解(相关连接:https://www.cnblogs.com/pinard/p/6251584.html)

注意:每个特征的均值要为0,特征缩放是可选的。

svd返回的U是nxn维矩阵,前k列的矩阵称为Ureduce(nxk)。

Zi = Ureduce' * Xi

======================================

如何把压缩数据解压缩还原到原来的维度?

X(i)approx = Ureduce * Z(i)

======================================

如何选择合适的k值?即特征应该从n维降低到哪个维度?

1 - 投影误差的均方 / 总偏差  = 保留的样本差异(?% of variance is retained)

通常均方投影误差除以总偏差不大于0.01,0.05或0.10

在向别人描述降维结果的时候不是说从n维降低到了k维,而是说保留了多少百分比的样本差异。

======================================

注意:PCA不适合用于处理过拟合。

主成分分析算法(PCA)的更多相关文章

  1. 主成分分析(PCA)特征选择算法详解

    1. 问题 真实的训练数据总是存在各种各样的问题: 1. 比如拿到一个汽车的样本,里面既有以“千米/每小时”度量的最大速度特征,也有“英里/小时”的最大速度特征,显然这两个特征有一个多余. 2. 拿到 ...

  2. 深入学习主成分分析(PCA)算法原理(Python实现)

    一:引入问题 首先看一个表格,下表是某些学生的语文,数学,物理,化学成绩统计: 首先,假设这些科目成绩不相关,也就是说某一科目考多少分与其他科目没有关系,那么如何判断三个学生的优秀程度呢?首先我们一眼 ...

  3. 主成分分析(PCA)算法,K-L变换 角度

    主成分分析(PCA)是多元统计分析中用来分析数据的一种方法,它是用一种较少数 量的特征对样本进行描述以达到降低特征空间维数的方法,它的本质实际上是K-L变换.PCA方法最著名的应用应该是在人脸识别中特 ...

  4. 【转】浅谈对主成分分析(PCA)算法的理解

    以前对PCA算法有过一段时间的研究,但没整理成文章,最近项目又打算用到PCA算法,故趁热打铁整理下PCA算法的知识.本文观点旨在抛砖引玉,不是权威,更不能尽信,只是本人的一点体会. 主成分分析(PCA ...

  5. PCA主成分分析算法的数学原理推导

    PCA(Principal Component Analysis)主成分分析法的数学原理推导1.主成分分析法PCA的特点与作用如下:(1)是一种非监督学习的机器学习算法(2)主要用于数据的降维(3)通 ...

  6. 主成分分析(PCA)原理总结

    主成分分析(Principal components analysis,以下简称PCA)是最重要的降维方法之一.在数据压缩消除冗余和数据噪音消除等领域都有广泛的应用.一般我们提到降维最容易想到的算法就 ...

  7. 主成分分析(PCA)原理及R语言实现

    原理: 主成分分析 - stanford 主成分分析法 - 智库 主成分分析(Principal Component Analysis)原理 主成分分析及R语言案例 - 文库 主成分分析法的原理应用及 ...

  8. A tutorial on Principal Components Analysis | 主成分分析(PCA)教程

    A tutorial on Principal Components Analysis 原著:Lindsay I Smith, A tutorial on Principal Components A ...

  9. 主成分分析(PCA)原理及R语言实现 | dimension reduction降维

    如果你的职业定位是数据分析师/计算生物学家,那么不懂PCA.t-SNE的原理就说不过去了吧.跑通软件没什么了不起的,网上那么多教程,copy一下就会.关键是要懂其数学原理,理解算法的假设,适合解决什么 ...

随机推荐

  1. postman Installation has failed: There was an error while installing the application. Check the setup log for more information and contact the author

    Error msg: Installation has failed: There was an error while installing the application. Check the s ...

  2. API简介

    概述 API(Application Programming Interface),应用程序编程接口.Java API是一本程序员的 字典 ,是JDK中提供给我们使用的类的说明文档.这些类将底层的代码 ...

  3. Maven运行报错

    在创建Maven项目时,出现报错:No goals have been specified for this build pom.xml文件加入  <build><defaultGo ...

  4. day09(垃圾回收机制)

    1,复习 文件处理 1.操作文件的三步骤 -- 打开文件:硬盘的空间被操作系统持有 | 文件对象被应用程序持续 -- 操作文件:读写操作 -- 释放文件:释放操作系统对硬盘空间的持有 2.基础的读写 ...

  5. 北京2018网络赛A题

    题意:给你一个迷宫,迷宫有开始节点和结束节点,问你从开始走到结束的最小时间,其中,#代表这个点有毒气,身上必须带着氧气瓶才行,B代表每次进入这个点可以带一个氧气瓶,最多身上带五个,P代表进入这个点加速 ...

  6. IIC时序操作24C02芯片

    1.心血来潮看自己能不能参考时序图重新写一个IIC驱动,加强一下时序图的理解.记录下来,以后遇到此类的IIC时序的芯片可以直接操作. 先说说自己参照手册来写AT24c02的IIC低层驱动,从写完到最后 ...

  7. linux makefile中一些复制运算的区别

    Makefile 中  :=. ?= .+= .=的区别 = 是最基本的赋值:= 是覆盖之前的值?= 是如果没有被赋值过就赋予等号后面的值,如果已经被赋值则就用之前的赋值+= 是添加等号后面的值

  8. vue在html中出现{{}}原因及解决办法

    在刚开始接触vue的时候,我们都是直接用<script>引入vue.js使用.没有借助vue-cli脚手架来构建项目. 对于一个初学者来说,跟着文档慢慢搬砖,使用vue进行数据绑定. 记得 ...

  9. JavaScript基础入门 - 01

    JavaScript入门 - 01 准备工作 在正式的学习JavaScript之前,我们先来学习一些小工具,帮助我们更好的学习和理解后面的内容. js代码位置 首先是如何编写JavaScript代码, ...

  10. CentOS7防火墙问题

    CentOS6关闭防火墙使用以下命令, //临时关闭service iptables stop//禁止开机启动chkconfig iptables off CentOS7中若使用同样的命令会报错, s ...