通过数据压缩(降维)可以减少特征数量,可以降低硬盘和内存的存储,加快算法的训练。

还可以把高维的数据压缩成二维或三维,这样方便做数据可视化。

数据压缩是通过相似或者相关度很高的特征来生成新的特征,减少特征数量。例如,上图x1是厘米,x2是英寸,这两个特征相关度很高,可以压缩成一个特征。

======================================

主成分分析(Principal Component Analysis, PCA)是常用的降维算法。

例如,要将二维数据压缩成一维数据,需要找到一个向量,使所有样本到该向量的投影误差(projection error)最小。

PCA不是线性回归,线性回归的差值是预测值和实际值的差,PCA的差值是样本到向量的投影误差。

线性回归需要用到标签,而PCA不需要用到标签。

======================================

在使用PCA算法前需要对数据进行预处理(每一个特征的均值要为0)

首先需要计算协方差矩阵: sigma = (1/m) * X' * X

然后需要计算sigma的特征向量。 svd函数是奇异值分解(相关连接:https://www.cnblogs.com/pinard/p/6251584.html)

注意:每个特征的均值要为0,特征缩放是可选的。

svd返回的U是nxn维矩阵,前k列的矩阵称为Ureduce(nxk)。

Zi = Ureduce' * Xi

======================================

如何把压缩数据解压缩还原到原来的维度?

X(i)approx = Ureduce * Z(i)

======================================

如何选择合适的k值?即特征应该从n维降低到哪个维度?

1 - 投影误差的均方 / 总偏差  = 保留的样本差异(?% of variance is retained)

通常均方投影误差除以总偏差不大于0.01,0.05或0.10

在向别人描述降维结果的时候不是说从n维降低到了k维,而是说保留了多少百分比的样本差异。

======================================

注意:PCA不适合用于处理过拟合。

主成分分析算法(PCA)的更多相关文章

  1. 主成分分析(PCA)特征选择算法详解

    1. 问题 真实的训练数据总是存在各种各样的问题: 1. 比如拿到一个汽车的样本,里面既有以“千米/每小时”度量的最大速度特征,也有“英里/小时”的最大速度特征,显然这两个特征有一个多余. 2. 拿到 ...

  2. 深入学习主成分分析(PCA)算法原理(Python实现)

    一:引入问题 首先看一个表格,下表是某些学生的语文,数学,物理,化学成绩统计: 首先,假设这些科目成绩不相关,也就是说某一科目考多少分与其他科目没有关系,那么如何判断三个学生的优秀程度呢?首先我们一眼 ...

  3. 主成分分析(PCA)算法,K-L变换 角度

    主成分分析(PCA)是多元统计分析中用来分析数据的一种方法,它是用一种较少数 量的特征对样本进行描述以达到降低特征空间维数的方法,它的本质实际上是K-L变换.PCA方法最著名的应用应该是在人脸识别中特 ...

  4. 【转】浅谈对主成分分析(PCA)算法的理解

    以前对PCA算法有过一段时间的研究,但没整理成文章,最近项目又打算用到PCA算法,故趁热打铁整理下PCA算法的知识.本文观点旨在抛砖引玉,不是权威,更不能尽信,只是本人的一点体会. 主成分分析(PCA ...

  5. PCA主成分分析算法的数学原理推导

    PCA(Principal Component Analysis)主成分分析法的数学原理推导1.主成分分析法PCA的特点与作用如下:(1)是一种非监督学习的机器学习算法(2)主要用于数据的降维(3)通 ...

  6. 主成分分析(PCA)原理总结

    主成分分析(Principal components analysis,以下简称PCA)是最重要的降维方法之一.在数据压缩消除冗余和数据噪音消除等领域都有广泛的应用.一般我们提到降维最容易想到的算法就 ...

  7. 主成分分析(PCA)原理及R语言实现

    原理: 主成分分析 - stanford 主成分分析法 - 智库 主成分分析(Principal Component Analysis)原理 主成分分析及R语言案例 - 文库 主成分分析法的原理应用及 ...

  8. A tutorial on Principal Components Analysis | 主成分分析(PCA)教程

    A tutorial on Principal Components Analysis 原著:Lindsay I Smith, A tutorial on Principal Components A ...

  9. 主成分分析(PCA)原理及R语言实现 | dimension reduction降维

    如果你的职业定位是数据分析师/计算生物学家,那么不懂PCA.t-SNE的原理就说不过去了吧.跑通软件没什么了不起的,网上那么多教程,copy一下就会.关键是要懂其数学原理,理解算法的假设,适合解决什么 ...

随机推荐

  1. MyIsam与InnoDB存储引擎主要区别

    MyIsam与InnoDB主要有以下4点大的区别,缓存机制,事务支持,锁定实现,数据物理存储方式(包括索引和数据). 1.缓存机制 myisam 仅仅缓存索引,不会缓存实际数据信息,他会将这一工作交给 ...

  2. Kafka简介及使用PHP处理Kafka消息

    Kafka简介及使用PHP处理Kafka消息 Kafka 是一种高吞吐的分布式消息系统,能够替代传统的消息队列用于解耦合数据处理,缓存未处理消息等,同时具有更高的吞吐率,支持分区.多副本.冗余,因此被 ...

  3. MySQL——合并查询结果

    利用  UNION 关键字,可以给出多条  SELECT  语句,并将它们的结果组合成一个结果集.合并时,两个表对应的列数和数据类型必须相同.SELECT 语句之间使用  UNION  或  UNIO ...

  4. Python静态网页爬取:批量获取高清壁纸

    前言 在设计爬虫项目的时候,首先要在脑内明确人工浏览页面获得图片时的步骤 一般地,我们去网上批量打开壁纸的时候一般操作如下: 1.打开壁纸网页 2.单击壁纸图(打开指定壁纸的页面) 3.选择分辨率(我 ...

  5. idea安装成功后,设置字体、快捷键、配置jdk等操作

    设置字体 配置jdk 快捷键 复制当前一行: 设置自动提示,不区分大小写 关闭当前窗口 设置类头注释 自定义注释+注释快捷键 Lombok 插件安装  get.set方法报红cannot resolv ...

  6. MySQL——修改用户密码 | 移除权限

    修改用户密码 '; 移除权限 REVOKE Delete, Drop ON *.* FROM `root`@`localhost`; 权限列表

  7. JavaScript基础入门 - 01

    JavaScript入门 - 01 准备工作 在正式的学习JavaScript之前,我们先来学习一些小工具,帮助我们更好的学习和理解后面的内容. js代码位置 首先是如何编写JavaScript代码, ...

  8. 【LOJ#3095】[SNOI2019]字符串(后缀数组)

    [LOJ#3095][SNOI2019]字符串(后缀数组) 题面 LOJ 题解 首先画图看看如何比较两个串的大小,发现这个东西等价于求两个相邻的后缀的\(LCP\). 一个做法是求出\(SA\),然后 ...

  9. CPU监控

    题目描述 Bob需要一个程序来监视CPU使用率.这是一个很繁琐的过程,为了让问题更加简单,Bob会慢慢列出今天会在用计算机时做什么事. Bob会干很多事,除了跑暴力程序看视频之外,还会做出去玩玩和用鼠 ...

  10. 一文入门C3

    2.CSS3 官方文档:http://www.w3school.com.cn/cssref/index.asp 2.1.CSS基础 基础简单过下,事先说明下:诸如引入.注释.案例就不一一演示了,有个工 ...