版权声明:本文为博主Bravo Yeung(知乎UserName同名)的原创文章,欲转载请先私信获博主允许,转载时请附上网址

http://blog.csdn.net/lzuacm

C++版 - Lintcode 77-Longest Common Subsequence最长公共子序列(LCS) - 题解

在线提交(不支持C#):

https://www.lintcode.com/problem/longest-common-subsequence/

题目描述

一个字符串的一个子序列是指,通过删除一些(也可以不删除)字符且不干扰剩余字符相对位置所组成的新字符串。例如,”ACE” 是 “ABCDE” 的一个子序列,而 “AEC” 不是)。

给出两个字符串,找到最长公共子序列(LCS),返回LCS的长度。

说明

样例

给出“ABCD”“EDCA”,这个LCS是 “A” (或 D或C),返回1

给出 “ABCD”“EACB”,这个LCS是“AC”返回 2

注意

序列可以不连续。


  ● Difficulty: Medium
  • Total Accepted: 18202

  • Total Submitted: 45985

  • Accepted Rate: 39%

Tags:

Longest Common Subsequence

LintCode Copyright

Dynamic Programming(DP)

分析:

将算式的计算结果记录在内存中,需要时直接调用该结果,从而避免无用的重复计算,提高处理效率,这在程序和算法设计中是一种行之有效的手法。动态规划就是这类手法之一。

事实上动态规划是一种记忆化递归(memorized recursive),缓存部分重要数据。另外,动态规划法可以建立递归式,通过循环顺次求出最优解。

为方便说明,这里我们用Xi" role="presentation">XiXi代表{x1,x2,⋯,xi" role="presentation">x1,x2,⋯,xix1,x2,⋯,xi},用Yj" role="presentation">YjYj代表{y1,y2,⋯,yj" role="presentation">y1,y2,⋯,yjy1,y2,⋯,yj }。那么,求长度分别为m、n的两个序列XY的LCS,就相当于求Xm" role="presentation">XmXm与Yn" role="presentation">YnYn的LCS。我们将其分割为局部问题进行分析。

首先,求Xm" role="presentation">XmXm与Yn" role="presentation">YnYn的LCS时要考虑以下两种情况:

  • 当xm=yn" role="presentation">xm=ynxm=yn时,在Xm−1" role="presentation">Xm−1Xm−1与Yn−1" role="presentation">Yn−1Yn−1的LCS后面加上xm(=yn)" role="presentation">xm(=yn)xm(=yn)就是xm" role="presentation">xmxm与yn" role="presentation">ynyn的LCS。

    举个例子,X=(a,b,c,c,d,a),Y={a, b, c, b, a}时xm=yn" role="presentation">xm=ynxm=yn,所以在Xm−1" role="presentation">Xm−1Xm−1与Yn−1" role="presentation">Yn−1Yn−1的LCS({a, b,c})后面加上xm" role="presentation">xmxm {=a) 即为Xm" role="presentation">XmXm与Yn" role="presentation">YnYn的LCS。

  • 当xm≠yn" role="presentation">xm≠ynxm≠yn时,Xm−1" role="presentation">Xm−1Xm−1与Yn" role="presentation">YnYn的LCS和Xm" role="presentation">XmXm与Yn−1" role="presentation">Yn−1Yn−1的LCS中更长的一方就是Xm" role="presentation">XmXm与Yn" role="presentation">YnYn的LCS。

    举个例子,X={a,b,c,c,d}, Y={a,b,c,b,a}时,Xm−1" role="presentation">Xm−1Xm−1与Yn" role="presentation">YnYn的LCS为{a,b,c),Xm" role="presentation">XmXm与Yn" role="presentation">YnYn的LCS为{a,b,c,b},因此Xm" role="presentation">XmXm与Yn−1" role="presentation">Yn−1Yn−1的LCS就是Xm" role="presentation">XmXm与Yn" role="presentation">YnYn的LCS。

这个算法对Xi" role="presentation">XiXi与Yj" role="presentation">YjYj同样适用。于是可准备下述函数,用来求解LCS的局部问题。

c[m+1][n+1]: 该二维数组中,c[i][j] 代表Xi" role="presentation">XiXi与Yj" role="presentation">YjYj的LCS的长度

c[i][j] 的值可由下述递推公式(Recursive Formula)求得。

c[i][j]={0i=0 || j=0c[i−1][j−1]+1i,j>0 and xi=yjmax(c[i][j−1],c[i−1][j])i,j>0 and xi≠yj" role="presentation">c[i][j]=⎧⎩⎨0c[i−1][j−1]+1max(c[i][j−1],c[i−1][j])i=0 || j=0i,j>0 and xi=yji,j>0 and xi≠yjc[i][j]={0i=0 || j=0c[i−1][j−1]+1i,j>0 and xi=yjmax(c[i][j−1],c[i−1][j])i,j>0 and xi≠yj

基于上述变量和公式,可以用动态规划法求序列XY的LCS。

已AC代码如下:

class Solution {
public:
    int longestCommonSubsequence(string &A, string &B) {
        int m = A.size();
        int n = B.size();

        int **c = (int **)malloc((m+1) * sizeof(int *));
        for (int i = 0; i < m + 1; i++)
            c[i] = (int *)malloc((n+1) * sizeof(int));

        int max1 = 0;
        A = ' ' + A;
        B = ' ' + B;
        for (size_t i = 1; i <= m; i++)
            c[i][0] = 0;
        for (size_t j = 1; j <= n; j++)
            c[0][j] = 0;

        for (size_t i = 1; i <= m; i++)
        {
            for (size_t j = 0; j <= n; j++)
            {
                if (A[i] == B[j])
                {
                    c[i][j] = c[i - 1][j - 1] + 1;
                }
                else
                    c[i][j] = max(c[i][j - 1], c[i - 1][j]);
                max1 = max(max1, c[i][j]);
            }
        }
        return max1;
    }
};

Rank:

您的提交打败了 92.60% 的提交.

扩展阅读:

最长公共子序列问题 - Fogsail Chen - SegmentFault 思否

https://segmentfault.com/a/1190000008521545

C++版 - Lintcode 77-Longest Common Subsequence最长公共子序列(LCS) - 题解的更多相关文章

  1. lintcode 77.Longest Common Subsequence(最长公共子序列)、79. Longest Common Substring(最长公共子串)

    Longest Common Subsequence最长公共子序列: 每个dp位置表示的是第i.j个字母的最长公共子序列 class Solution { public: int findLength ...

  2. POJ 1458 Common Subsequence(最长公共子序列LCS)

    POJ1458 Common Subsequence(最长公共子序列LCS) http://poj.org/problem?id=1458 题意: 给你两个字符串, 要你求出两个字符串的最长公共子序列 ...

  3. LCS(Longest Common Subsequence 最长公共子序列)

    最长公共子序列 英文缩写为LCS(Longest Common Subsequence).其定义是,一个序列 S ,如果分别是两个或多个已知序列的子序列,且是所有符合此条件序列中最长的,则 S 称为已 ...

  4. LCS修改版(Longest Common Subsequence 最长公共子序列)

    题目描述 作为一名情报局特工,Nova君(2号)有着特殊的传达情报的技巧.为了避免被窃取情报,每次传达时,他都会发出两句旁人看来意义不明话,实际上暗号已经暗含其中.解密的方法很简单,分别从两句话里删掉 ...

  5. LCS(Longest Common Subsequence)最长公共子序列

    最长公共子序列(LCS)是一个在一个序列集合中(通常为两个序列)用来查找所有序列中最长子序列的问题.这与查找最长公共子串的问题不同的地方是:子序列不需要在原序列中占用连续的位置 .最长公共子序列问题是 ...

  6. POJ 1458 Common Subsequence 最长公共子序列 LCS

    LCS #include<cstdio> #include<cstring> #include<algorithm> #include<iostream> ...

  7. HDU 1159 Common Subsequence 最长公共子序列

    HDU 1159 Common Subsequence 最长公共子序列 题意 给你两个字符串,求出这两个字符串的最长公共子序列,这里的子序列不一定是连续的,只要满足前后关系就可以. 解题思路 这个当然 ...

  8. hdu 1159 Common Subsequence(最长公共子序列 DP)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1159 Common Subsequence Time Limit: 2000/1000 MS (Jav ...

  9. Common Subsequence(最长公共子序列)

    A subsequence of a given sequence is the given sequence with some elements (possible none) left out. ...

随机推荐

  1. Java 博客导航

    Java 博客导航 一.基础知识 Java 基础知识 Java 常用知识点 Java 多线程 Java 正则使用 Java IO Java 集合

  2. 微信小程序,转盘抽奖

    微信小程序大转盘 代码源码:https://github.com/yewook/Lottery-turntable

  3. Java下载文件的几种方式

    转发自博客园Sunny的文章 1.以流的方式下载 public HttpServletResponse download(String path, HttpServletResponse respon ...

  4. springboot添加邮件发送及压缩功能

    springboot添加邮件发送及文件压缩功能 转载请注明出处:https://www.cnblogs.com/funnyzpc/p/9190233.html 先来一段诗 ``` 就这样吧 忍受折磨 ...

  5. BZOJ.5305.[HAOI2018]苹果树(组合 计数)

    LOJ BZOJ 洛谷 BZOJ上除了0ms的Rank1啦.明明这题常数很好优化的. 首先,\(n=1\)时有\(2\)个位置放叶子,\(n=2\)时有\(3\)个... 可知\(n\)个点的有标号二 ...

  6. python学习笔记(7)

    第七章 文件和数据格式化 文件的使用 文件是数据的抽象和集合 文件是存储在辅助存储器上的数据序列 文件是数据存储的一种形式 文件展现形态:文本文件和二进制文件 文本文件 由单一特定编码组成的文件,如U ...

  7. javascript 插入DOM节点

    1.使用appendChild,把一个子节点添加到父节点的最后一个子节点,.innerText插入的是内容 HTML <!-- HTML结构 --> <p id="js&q ...

  8. 微信小程序开发工具中快捷键

    微信小程序开发工具表面上是没有更多的样式类的工具,例如缩进.隐藏代码什么的. 现在总结一下小程序开发工具常用的一些快捷键: 格式调整 Ctrl+S:保存文件Ctrl+[, Ctrl+]:代码行缩进Ct ...

  9. d3.js,初遇

    接触d3完全是由兴趣所致,废话不多说看代码: var dataArray = [23, 13, 21, 14, 37, 15, 18, 34, 30];这是这个图所需要的数据,其实这个柱状图最初不长这 ...

  10. unittest中的测试固件

    运行下面的两段代码,看看有什么不同? 第一段: import unittest from selenium import webdriver class F2(unittest.TestCase): ...