匈牙利算法

简介

匈牙利算法是一种求二分图最大匹配的算法.

时间复杂度: 邻接表/前向星: \(O(n * m)\), 邻接矩阵: \(O(n^3)\).

空间复杂度: 邻接表/前向星: \(O(n + m)\), 邻接矩阵: \(O(n^2)\).

它的主要思路就是对每个点寻找增广路, 尝试改变之前的选择, 判断是否可行.

事实上, 利用dinic/isap跑二分图有 \(O(n * \sqrt{m})\) 的优秀复杂度(不会证), 因此匈牙利算法仅用于少数特殊情况↓

代码

int to[nsz][nsz]; //邻接表
int vi[nsz],mat[nsz];
bool arg(int p){
rep(i,1,to[0]){
int v=to[p][i];
if(vi[v])continue;
vi[v]=1;
if(mat[v]==0||arg(mat[v])){
mat[v]=p,mat[p]=v;
return 1;
}
}
return 0;
} int hung(){
int res=0;
repdo(i,1,n){
memset(vi,0,sizeof(vi));
res+=arg(i);
}
return res;
}

二分图最小字典序匹配

简介

这就是上面说的特殊情况:P

考虑匈牙利算法的过程: 将每一个点尝试增广, 同时改变之前的点的匹配.

因此, 我们可以考虑将所有点的出边按标号排序, 逆向遍历每一个点, 并按标号顺序尝试增广.

显然, 第一个点的匹配一定是它能匹配到的最小标号, 第二个点的匹配是满足第一个点时的最小标号, 以此类推.

代码

//[NOI2009] 变换序列
int to[nsz][3];
int vi[nsz],mat[nsz];
bool arg(int p){
rep(i,0,1){
int v=to[p][i];
if(vi[v])continue;
vi[v]=1;
if(mat[v]==0||arg(mat[v])){
mat[v]=p,mat[p]=v;
return 1;
}
}
return 0;
} int hung(){
int res=0;
repdo(i,n-1,0){
memset(vi,0,sizeof(vi));
res+=arg(i);
}
return res;
}

参考资料

[模板] 匈牙利算法&&二分图最小字典序匹配的更多相关文章

  1. bzoj3168 钙铁锌硒维生素 (矩阵求逆+二分图最小字典序匹配)

    设第一套为A,第二套为B 先对于每个B[i]判断他能否替代A[j],即B[i]与其他的A线性无关 设$B[i]=\sum\limits_{k}{c[k]*A[k]}$,那么只要看c[j]是否等于零即可 ...

  2. # 匈牙利算法(二分图最大匹配)- hdu 过山车

    匈牙利算法(二分图最大匹配)- hdu 过山车 Hdu 2063 二分图:图中的点可以分成两组U,V,所有边都是连接U,V中的顶点.等价定义是:含奇数条边的图. 匹配:一个匹配是一个边的集合,其中任意 ...

  3. 【POJ 2195】 Going Home(KM算法求最小权匹配)

    [POJ 2195] Going Home(KM算法求最小权匹配) Going Home Time Limit: 1000MS   Memory Limit: 65536K Total Submiss ...

  4. Bzoj 1562: [NOI2009]变换序列 匈牙利算法,二分图匹配

    题目: http://cojs.tk/cogs/problem/problem.php?pid=409 409. [NOI2009]变换序列 ★★☆   输入文件:transform.in   输出文 ...

  5. HDU 1533:Going Home(KM算法求二分图最小权匹配)

    http://acm.hdu.edu.cn/showproblem.php?pid=1533 Going Home Problem Description   On a grid map there ...

  6. ACM/ICPC 之 机器调度-匈牙利算法解最小点覆盖集(DFS)(POJ1325)

    //匈牙利算法-DFS //求最小点覆盖集 == 求最大匹配 //Time:0Ms Memory:208K #include<iostream> #include<cstring&g ...

  7. HDU - 1150 POJ - 1325 Machine Schedule 匈牙利算法(最小点覆盖)

    Machine Schedule As we all know, machine scheduling is a very classical problem in computer science ...

  8. [ACM_图论] The Perfect Stall 完美的牛栏(匈牙利算法、最大二分匹配)

    描述 农夫约翰上个星期刚刚建好了他的新牛棚,他使用了最新的挤奶技术.不幸的是,由于工程问题,每个牛栏都不一样.第一个星期,农夫约翰随便地让奶牛们进入牛栏,但是问题很快地显露出来:每头奶牛都只愿意在她们 ...

  9. poj1274 匈牙利算法 二分图最大匹配

    poj1274 题意: 有n个奶牛, m个畜舍, 每个畜舍最多装1头牛,每只奶牛只有在自己喜欢的畜舍里才能产奶. 求最大产奶量. 分析: 其实题意很明显, 二分图的最大匹配, 匈牙利算法. #incl ...

随机推荐

  1. CentOS7 分布式安装 Hadoop 2.8

    1. 基本环境 1.1 操作系统 操作系统:CentOS7.3 1.2 三台虚拟机 172.20.20.100 master 172.20.20.101 slave1 172.20.20.102 sl ...

  2. thymeleaf的配置

    1.在springboto项目中使用thymeleaf标签,必须先添加依赖,如下. <dependency> <groupId>org.springframework.boot ...

  3. SQL server 远程连接不成功解决

    一直以来打算自己做一个博客网站,前段时间开始准备做了,正好碰上新睿云服务器免费一年的活动,赶紧拿下.装好了sqlserver ,用本地访问没有问题,但是关键是外网访问一直不行找了好多资料最终才搞定.下 ...

  4. pycharm导入自定义py文件出错

    1. 被导入的py文件不能以数字开头,否则会报错,红色波浪线

  5. WPF中在MVVM模式下,后台绑定ListCollectionView事件触发问题

    问题:WPF中MVVM模式下 ListView绑定ListCollectionView时,CurrentChanged无法触发 解决方案: 初期方案:利用ListView的SelectionChang ...

  6. 如何在Asp.Net中使用JQueryEasyUI

    JQueryEasyUI的基本信息: 官方下载 官方演示 官方文档 一.jQuery easyUI下载后解压的文件目录如下图: demo:JQueryEasyUI的一些示例页面,在项目使用可以将该目录 ...

  7. 关于使用国内dock仓库,网易、DaoCloud

    使用国内docker镜像仓库,大大提高镜像的下载速度,从docker hub下载慢的不要不要的,甚至根本下载不了镜像,在docker for windows 18.06中增加一个配置即可,非常简单,具 ...

  8. koa 路由配置

    Koa 路由 路由(Routing)是由一个 URI(或者叫路径)和一个特定的 HTTP 方法(GET.POST 等) 组成的,涉及到应用如何响应客户端对某个网站节点的访问. 通俗的讲:路由就是根据不 ...

  9. python Socket socketserver

    Socket 套接字 socket的 类型 实现socket对象时传入 到socket 类中 socket.AF_INET 服务器间的通讯 IPv4 socket.AF_INET6 IPv6 sock ...

  10. python3 今日大纲 day05

    1. 上周内容回顾 1. 闭包: 内层函数对外层函数变量的使用 def outer(): a = 10 def inner(): print(a) return inner ret = outer() ...