C# RSA加密/解密
RSA公钥加密算法是1977年由Ron Rivest、Adi Shamirh和LenAdleman在(美国麻省理工学院)开发的。RSA取名来自开发他们三者的名字。RSA是目前最有影响力的公钥加密算法,它能够抵抗到目前为止已知的所有密码攻击,已被ISO推荐为公钥数据加密标准。RSA算法基于一个十分简单的数论事实:将两个大素数相乘十分容易,但那时想要对其乘积进行因式分解却极其困难,因此可以将乘积公开作为加密密钥。RSA算法是第一个能同时用于加密和数字签名的算法,也易于理解和操作。
RSA是被研究得最广泛的公钥算法,从提出到现在已近二十年,经历了各种攻击的考验,逐渐为人们接受,普遍认为是目前最优秀的公钥方案之一。RSA的安全性依赖于大数的因子分解,但并没有从理论上证明破译RSA的难度与大数分解难度等价。即RSA的重大缺陷是无法从理论上把握它的保密性能如何,而且密码学界多数人士倾向于因子分解不是NPC问题。
RSA的缺点主要有:
A)产生密钥很麻烦,受到素数产生技术的限制,因而难以做到一次一密。
B)分组长度太大,为保证安全性,n 至少也要 600bits以上,使运算代价很高,尤其是速度较慢,较对称密码算法慢几个数量级;且随着大数分解技术的发展,这个
长度还在增加,不利于数据格式的标准化。目前,SET(Secure Electronic Transaction)协议中要求CA采用2048bits长的密钥,其他实体使用1024比特的密钥。C)RSA密钥长度随着保密级别提高,增加很快。下表列出了对同一安全级别所对应的密钥长度。
| 保密级别 | 对称密钥长度(bit) | RSA密钥长度(bit) | ECC密钥长度(bit) | 保密年限 |
| 80 | 80 | 1024 | 160 | 2010 |
| 112 | 112 | 2048 | 224 | 2030 |
| 128 | 128 | 3072 | 256 | 2040 |
| 192 | 192 | 7680 | 384 | 2080 |
| 256 | 256 | 15360 | 512 | 2120 |
这种算法1978年就出现了,它是第一个既能用于数据加密也能用于数字签名的算法。它易于理解和操作,也很流行。算法的名字以发明者的名字命名:Ron Rivest, AdiShamir 和Leonard Adleman。早在1973年,英国国家通信总局的数学家Clifford Cocks就发现了类似的算法。但是他的发现被列为绝密,直到1998年才公诸于世。
RSA算法是一种非对称密码算法,所谓非对称,就是指该算法需要一对密钥,使用其中一个加密,则需要用另一个才能解密。
RSA的算法涉及三个参数,n、e1、e2。
其中,n是两个大质数p、q的积,n的二进制表示时所占用的位数,就是所谓的密钥长度。
e1和e2是一对相关的值,e1可以任意取,但要求e1与(p-1)*(q-1)互质;再选择e2,要求(e2*e1)mod((p-1)*(q-1))=1。
(n及e1),(n及e2)就是密钥对。
RSA加解密的算法完全相同,设A为明文,B为密文,则:A=B^e1 mod n;B=A^e2 mod n;
e1和e2可以互换使用,即:
A=B^e2 mod n;B=A^e1 mod n;

C#代码实现
需引用using System.Security.Cryptography;

/// <summary>
/// RSA加密
/// </summary>
/// <param name="publickey"></param>
/// <param name="content"></param>
/// <returns></returns>
public static string RSAEncrypt(string publickey, string content)
{
publickey = @"<RSAKeyValue><Modulus>5m9m14XH3oqLJ8bNGw9e4rGpXpcktv9MSkHSVFVMjHbfv+SJ5v0ubqQxa5YjLN4vc49z7SVju8s0X4gZ6AzZTn06jzWOgyPRV54Q4I0DCYadWW4Ze3e+BOtwgVU1Og3qHKn8vygoj40J6U85Z/PTJu3hN1m75Zr195ju7g9v4Hk=</Modulus><Exponent>AQAB</Exponent></RSAKeyValue>";
RSACryptoServiceProvider rsa = new RSACryptoServiceProvider();
byte[] cipherbytes;
rsa.FromXmlString(publickey);
cipherbytes = rsa.Encrypt(Encoding.UTF8.GetBytes(content), false); return Convert.ToBase64String(cipherbytes);
} /// <summary>
/// RSA解密
/// </summary>
/// <param name="privatekey"></param>
/// <param name="content"></param>
/// <returns></returns>
public static string RSADecrypt(string privatekey, string content)
{
privatekey = @"<RSAKeyValue><Modulus>5m9m14XH3oqLJ8bNGw9e4rGpXpcktv9MSkHSVFVMjHbfv+SJ5v0ubqQxa5YjLN4vc49z7SVju8s0X4gZ6AzZTn06jzWOgyPRV54Q4I0DCYadWW4Ze3e+BOtwgVU1Og3qHKn8vygoj40J6U85Z/PTJu3hN1m75Zr195ju7g9v4Hk=</Modulus><Exponent>AQAB</Exponent><P>/hf2dnK7rNfl3lbqghWcpFdu778hUpIEBixCDL5WiBtpkZdpSw90aERmHJYaW2RGvGRi6zSftLh00KHsPcNUMw==</P><Q>6Cn/jOLrPapDTEp1Fkq+uz++1Do0eeX7HYqi9rY29CqShzCeI7LEYOoSwYuAJ3xA/DuCdQENPSoJ9KFbO4Wsow==</Q><DP>ga1rHIJro8e/yhxjrKYo/nqc5ICQGhrpMNlPkD9n3CjZVPOISkWF7FzUHEzDANeJfkZhcZa21z24aG3rKo5Qnw==</DP><DQ>MNGsCB8rYlMsRZ2ek2pyQwO7h/sZT8y5ilO9wu08Dwnot/7UMiOEQfDWstY3w5XQQHnvC9WFyCfP4h4QBissyw==</DQ><InverseQ>EG02S7SADhH1EVT9DD0Z62Y0uY7gIYvxX/uq+IzKSCwB8M2G7Qv9xgZQaQlLpCaeKbux3Y59hHM+KpamGL19Kg==</InverseQ><D>vmaYHEbPAgOJvaEXQl+t8DQKFT1fudEysTy31LTyXjGu6XiltXXHUuZaa2IPyHgBz0Nd7znwsW/S44iql0Fen1kzKioEL3svANui63O3o5xdDeExVM6zOf1wUUh/oldovPweChyoAdMtUzgvCbJk1sYDJf++Nr0FeNW1RB1XG30=</D></RSAKeyValue>";
RSACryptoServiceProvider rsa = new RSACryptoServiceProvider();
byte[] cipherbytes;
rsa.FromXmlString(privatekey);
cipherbytes = rsa.Decrypt(Convert.FromBase64String(content), false); return Encoding.UTF8.GetString(cipherbytes);
}
C# RSA加密/解密的更多相关文章
- 兼容javascript和C#的RSA加密解密算法,对web提交的数据进行加密传输
Web应用中往往涉及到敏感的数据,由于HTTP协议以明文的形式与服务器进行交互,因此可以通过截获请求的数据包进行分析来盗取有用的信息.虽然https可以对传输的数据进行加密,但是必须要申请证书(一般都 ...
- iOS使用Security.framework进行RSA 加密解密签名和验证签名
iOS 上 Security.framework为我们提供了安全方面相关的api: Security框架提供的RSA在iOS上使用的一些小结 支持的RSA keySize 大小有:512,768,10 ...
- openssl evp RSA 加密解密
openssl evp RSA 加密解密 可以直接使用RSA.h 提供的接口 如下测试使用EVP提供的RSA接口 1. EVP提供的RSA 加密解密 主要接口: int EVP_PKEY_encryp ...
- C# 与JAVA 的RSA 加密解密交互,互通,C#使用BouncyCastle来实现私钥加密,公钥解密的方法
因为C#的RSA加密解密只有公钥加密,私钥解密,没有私钥加密,公钥解密.在网上查了很久也没有很好的实现.BouncyCastle的文档少之又少.很多人可能会说,C#也是可以的,通过Biginteger ...
- Cryptopp iOS 使用 RSA加密解密和签名验证签名
Cryptopp 是一个c++写的功能完善的密码学工具,类似于openssl 官网:https://www.cryptopp.com 以下主要演示Cryptopp 在iOS上的RSA加密解密签名与验证 ...
- C# Java间进行RSA加密解密交互
原文:C# Java间进行RSA加密解密交互 这里,讲一下RSA算法加解密在C#和Java之间交互的问题,这两天纠结了很久,也看了很多其他人写的文章,颇受裨益,但没能解决我的实际问题,终于,还是被我捣 ...
- C# Java间进行RSA加密解密交互(二)
原文:C# Java间进行RSA加密解密交互(二) 接着前面一篇文章C# Java间进行RSA加密解密交互,继续探讨这个问题. 在前面,虽然已经实现了C# Java间进行RSA加密解密交互,但是还是与 ...
- C# Java间进行RSA加密解密交互(三)
原文:C# Java间进行RSA加密解密交互(三) 接着前面一篇C# Java间进行RSA加密解密交互(二)说吧,在上篇中为了实现 /** * RSA加密 * @param text--待加密的明文 ...
- RSA加密解密及数字签名Java实现--转
RSA公钥加密算法是1977年由罗纳德·李维斯特(Ron Rivest).阿迪·萨莫尔(Adi Shamir)和伦纳德·阿德曼(Leonard Adleman)一起提出的.当时他们三人都在麻省理工学院 ...
- RSA加密解密和读取公钥、私钥
/// <summary> /// RSA加密解密及RSA签名和验证 /// </summary> public class RSADE { ...
随机推荐
- java 中的访问修饰符
一. public:所有类都可以访问 protected:所有子类和同包下的类都可以访问 缺省:同包类都可以访问 private:类本身才可以访问 注意点:protected修饰类属性时,例如 pac ...
- 【POJ】2001 Shortest Prefixes
字典树. #include <cstdio> #include <cstring> #include <cstdlib> #define MAXN 26 typed ...
- git日志的查看与修改
1.命令行中查看日志 git log 默认是显示所有的日志信息,之前出来的界面显示的日志,很少. 最后发现,只需要使用键盘上向下键↓,就可以继续浏览更多的日志 空格键,可以翻页浏览日志. 向左← 向 ...
- 【转】Android--UI之ProgressBar--不错
原文网址:http://www.cnblogs.com/plokmju/p/android_progressbar.html 前言 开门见山,开篇明意.这篇博客主要讲解一下Android中Progre ...
- Spark(Hive) SQL数据类型使用详解(Python)
Spark SQL使用时需要有若干“表”的存在,这些“表”可以来自于Hive,也可以来自“临时表”.如果“表”来自于Hive,它的模式(列名.列类型等)在创建时已经确定,一般情况下我们直接通过Spar ...
- C# 导出 Excel 数字列出现‘0’的解决办法
在DataGird的中某一列全是数字并且长度大于15的字符,在导出excel时数字列第15-18位全部为0. 解决办法:在需导出数字列前加入英文字符状态的单引号(‘ ), 如: <asp:Tem ...
- Java---网络编程(4)-C/S-B/S
C/S 与 B/S ☆ C/S ( Client/Server ) 客户端和服务端的特点 1.客户端和服务端的软件都需要程序员进行编写. 2.客户端维护起来较为麻烦.(缺陷) 3.客户端的存在可以将一 ...
- HDOJ 1013题Digital Roots 大数,9余数定理
Problem Description The digital root of a positive integer is found by summing the digits of the int ...
- ACM1228_STL的应用
#include<iostream> #include<string> #include<map> using namespace std; map<stri ...
- Axure初体验:简单交互、通过按钮切换图片
前言: 之前是一直用processon的UI原型设计,后来感觉只能完成静态页面的processon满足不了原型设计的需求,断网时候也不方便修改.展示.最终还是决定学习动态页面的制作,所选工具为原型设计 ...