C# RSA加密/解密
RSA公钥加密算法是1977年由Ron Rivest、Adi Shamirh和LenAdleman在(美国麻省理工学院)开发的。RSA取名来自开发他们三者的名字。RSA是目前最有影响力的公钥加密算法,它能够抵抗到目前为止已知的所有密码攻击,已被ISO推荐为公钥数据加密标准。RSA算法基于一个十分简单的数论事实:将两个大素数相乘十分容易,但那时想要对其乘积进行因式分解却极其困难,因此可以将乘积公开作为加密密钥。RSA算法是第一个能同时用于加密和数字签名的算法,也易于理解和操作。
RSA是被研究得最广泛的公钥算法,从提出到现在已近二十年,经历了各种攻击的考验,逐渐为人们接受,普遍认为是目前最优秀的公钥方案之一。RSA的安全性依赖于大数的因子分解,但并没有从理论上证明破译RSA的难度与大数分解难度等价。即RSA的重大缺陷是无法从理论上把握它的保密性能如何,而且密码学界多数人士倾向于因子分解不是NPC问题。
RSA的缺点主要有:
A)产生密钥很麻烦,受到素数产生技术的限制,因而难以做到一次一密。
B)分组长度太大,为保证安全性,n 至少也要 600bits以上,使运算代价很高,尤其是速度较慢,较对称密码算法慢几个数量级;且随着大数分解技术的发展,这个
长度还在增加,不利于数据格式的标准化。目前,SET(Secure Electronic Transaction)协议中要求CA采用2048bits长的密钥,其他实体使用1024比特的密钥。C)RSA密钥长度随着保密级别提高,增加很快。下表列出了对同一安全级别所对应的密钥长度。
保密级别 | 对称密钥长度(bit) | RSA密钥长度(bit) | ECC密钥长度(bit) | 保密年限 |
80 | 80 | 1024 | 160 | 2010 |
112 | 112 | 2048 | 224 | 2030 |
128 | 128 | 3072 | 256 | 2040 |
192 | 192 | 7680 | 384 | 2080 |
256 | 256 | 15360 | 512 | 2120 |
这种算法1978年就出现了,它是第一个既能用于数据加密也能用于数字签名的算法。它易于理解和操作,也很流行。算法的名字以发明者的名字命名:Ron Rivest, AdiShamir 和Leonard Adleman。早在1973年,英国国家通信总局的数学家Clifford Cocks就发现了类似的算法。但是他的发现被列为绝密,直到1998年才公诸于世。
RSA算法是一种非对称密码算法,所谓非对称,就是指该算法需要一对密钥,使用其中一个加密,则需要用另一个才能解密。
RSA的算法涉及三个参数,n、e1、e2。
其中,n是两个大质数p、q的积,n的二进制表示时所占用的位数,就是所谓的密钥长度。
e1和e2是一对相关的值,e1可以任意取,但要求e1与(p-1)*(q-1)互质;再选择e2,要求(e2*e1)mod((p-1)*(q-1))=1。
(n及e1),(n及e2)就是密钥对。
RSA加解密的算法完全相同,设A为明文,B为密文,则:A=B^e1 mod n;B=A^e2 mod n;
e1和e2可以互换使用,即:
A=B^e2 mod n;B=A^e1 mod n;
C#代码实现
需引用using System.Security.Cryptography;

/// <summary>
/// RSA加密
/// </summary>
/// <param name="publickey"></param>
/// <param name="content"></param>
/// <returns></returns>
public static string RSAEncrypt(string publickey, string content)
{
publickey = @"<RSAKeyValue><Modulus>5m9m14XH3oqLJ8bNGw9e4rGpXpcktv9MSkHSVFVMjHbfv+SJ5v0ubqQxa5YjLN4vc49z7SVju8s0X4gZ6AzZTn06jzWOgyPRV54Q4I0DCYadWW4Ze3e+BOtwgVU1Og3qHKn8vygoj40J6U85Z/PTJu3hN1m75Zr195ju7g9v4Hk=</Modulus><Exponent>AQAB</Exponent></RSAKeyValue>";
RSACryptoServiceProvider rsa = new RSACryptoServiceProvider();
byte[] cipherbytes;
rsa.FromXmlString(publickey);
cipherbytes = rsa.Encrypt(Encoding.UTF8.GetBytes(content), false); return Convert.ToBase64String(cipherbytes);
} /// <summary>
/// RSA解密
/// </summary>
/// <param name="privatekey"></param>
/// <param name="content"></param>
/// <returns></returns>
public static string RSADecrypt(string privatekey, string content)
{
privatekey = @"<RSAKeyValue><Modulus>5m9m14XH3oqLJ8bNGw9e4rGpXpcktv9MSkHSVFVMjHbfv+SJ5v0ubqQxa5YjLN4vc49z7SVju8s0X4gZ6AzZTn06jzWOgyPRV54Q4I0DCYadWW4Ze3e+BOtwgVU1Og3qHKn8vygoj40J6U85Z/PTJu3hN1m75Zr195ju7g9v4Hk=</Modulus><Exponent>AQAB</Exponent><P>/hf2dnK7rNfl3lbqghWcpFdu778hUpIEBixCDL5WiBtpkZdpSw90aERmHJYaW2RGvGRi6zSftLh00KHsPcNUMw==</P><Q>6Cn/jOLrPapDTEp1Fkq+uz++1Do0eeX7HYqi9rY29CqShzCeI7LEYOoSwYuAJ3xA/DuCdQENPSoJ9KFbO4Wsow==</Q><DP>ga1rHIJro8e/yhxjrKYo/nqc5ICQGhrpMNlPkD9n3CjZVPOISkWF7FzUHEzDANeJfkZhcZa21z24aG3rKo5Qnw==</DP><DQ>MNGsCB8rYlMsRZ2ek2pyQwO7h/sZT8y5ilO9wu08Dwnot/7UMiOEQfDWstY3w5XQQHnvC9WFyCfP4h4QBissyw==</DQ><InverseQ>EG02S7SADhH1EVT9DD0Z62Y0uY7gIYvxX/uq+IzKSCwB8M2G7Qv9xgZQaQlLpCaeKbux3Y59hHM+KpamGL19Kg==</InverseQ><D>vmaYHEbPAgOJvaEXQl+t8DQKFT1fudEysTy31LTyXjGu6XiltXXHUuZaa2IPyHgBz0Nd7znwsW/S44iql0Fen1kzKioEL3svANui63O3o5xdDeExVM6zOf1wUUh/oldovPweChyoAdMtUzgvCbJk1sYDJf++Nr0FeNW1RB1XG30=</D></RSAKeyValue>";
RSACryptoServiceProvider rsa = new RSACryptoServiceProvider();
byte[] cipherbytes;
rsa.FromXmlString(privatekey);
cipherbytes = rsa.Decrypt(Convert.FromBase64String(content), false); return Encoding.UTF8.GetString(cipherbytes);
}
C# RSA加密/解密的更多相关文章
- 兼容javascript和C#的RSA加密解密算法,对web提交的数据进行加密传输
Web应用中往往涉及到敏感的数据,由于HTTP协议以明文的形式与服务器进行交互,因此可以通过截获请求的数据包进行分析来盗取有用的信息.虽然https可以对传输的数据进行加密,但是必须要申请证书(一般都 ...
- iOS使用Security.framework进行RSA 加密解密签名和验证签名
iOS 上 Security.framework为我们提供了安全方面相关的api: Security框架提供的RSA在iOS上使用的一些小结 支持的RSA keySize 大小有:512,768,10 ...
- openssl evp RSA 加密解密
openssl evp RSA 加密解密 可以直接使用RSA.h 提供的接口 如下测试使用EVP提供的RSA接口 1. EVP提供的RSA 加密解密 主要接口: int EVP_PKEY_encryp ...
- C# 与JAVA 的RSA 加密解密交互,互通,C#使用BouncyCastle来实现私钥加密,公钥解密的方法
因为C#的RSA加密解密只有公钥加密,私钥解密,没有私钥加密,公钥解密.在网上查了很久也没有很好的实现.BouncyCastle的文档少之又少.很多人可能会说,C#也是可以的,通过Biginteger ...
- Cryptopp iOS 使用 RSA加密解密和签名验证签名
Cryptopp 是一个c++写的功能完善的密码学工具,类似于openssl 官网:https://www.cryptopp.com 以下主要演示Cryptopp 在iOS上的RSA加密解密签名与验证 ...
- C# Java间进行RSA加密解密交互
原文:C# Java间进行RSA加密解密交互 这里,讲一下RSA算法加解密在C#和Java之间交互的问题,这两天纠结了很久,也看了很多其他人写的文章,颇受裨益,但没能解决我的实际问题,终于,还是被我捣 ...
- C# Java间进行RSA加密解密交互(二)
原文:C# Java间进行RSA加密解密交互(二) 接着前面一篇文章C# Java间进行RSA加密解密交互,继续探讨这个问题. 在前面,虽然已经实现了C# Java间进行RSA加密解密交互,但是还是与 ...
- C# Java间进行RSA加密解密交互(三)
原文:C# Java间进行RSA加密解密交互(三) 接着前面一篇C# Java间进行RSA加密解密交互(二)说吧,在上篇中为了实现 /** * RSA加密 * @param text--待加密的明文 ...
- RSA加密解密及数字签名Java实现--转
RSA公钥加密算法是1977年由罗纳德·李维斯特(Ron Rivest).阿迪·萨莫尔(Adi Shamir)和伦纳德·阿德曼(Leonard Adleman)一起提出的.当时他们三人都在麻省理工学院 ...
- RSA加密解密和读取公钥、私钥
/// <summary> /// RSA加密解密及RSA签名和验证 /// </summary> public class RSADE { ...
随机推荐
- SVN 修改URL路径|SVN 项目路径修改
在svn的根目录下面右键 输入要修改的地址: 点击ok 搞定... ~~~
- nbtstat Linux版源码, 通过IP获取主机名
nbtstat Linux版, 通过IP获取主机名/* NETBIOS name lookup tool - by eSDee of Netric (www.netric.org) * yeh.. i ...
- (转)MVC 路由
URL路由系统通过对请求地址进行解析从而得到以目标Controller名称为核心的路由数据.Url路由系统最初是为了实现请求url与物理文件路径分离而建立的,MVC的Url Route是将Url地址与 ...
- Win10开发必备:Visual Studio 2015正式版下载
7月21日凌晨消息,面向大众用户的Visual Studio 2015集成开发工具正式版免费试用版已经推出.本文帮大家汇总一下简体中文社区版.专业版以及企业版在线安装版以及ISO离线安装镜像下载地址. ...
- CSU 1507 超大型LED显示屏 第十届湖南省赛题
题目链接:http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1507 解题思路:这是一道模拟题,看了那么多人的代码,我觉得我的代码是最简的,哈哈,其实就 ...
- Django-RQ首页、文档和下载 - Django 和 RQ 集成 - 开源中国社区
Django-RQ首页.文档和下载 - Django 和 RQ 集成 - 开源中国社区 Django-RQ 项目实现了 Django 框架和 RQ 消息队列之间的集成.
- 错误137(net::ERR_NAME_RESOLUTION_FAILED):未知错误的解决办法
现象:之前遇到一些新闻网站打不开的情况...而让异地的朋友打开却能打开.. 解决①:配置dns ,因为公司内部的网络是桥接的 我们dns服务器默认是192.168.1.1 ,dns被封锁,直接导致一些 ...
- 虚拟机linux系统下ifconfig获取不到ip
原因:网卡未激活 1.输入ifup eth0命令激活网卡 2.输入ifconfig查询ip
- 查询grep结果的前后n行
linux系统中,利用grep打印匹配的上下几行 如果在只是想匹配模式的上下几行,grep可以实现. $grep -5 'parttern' inputfile //打印匹配行的前后5行 ...
- C++程序在debug模式下遇到Run-Time Check Failure #0 - The value of ESP was not properly saved across a function call问题。
今天遇到一个Access Violation的crash,只看crash call stack没有找到更多的线索,于是在debug模式下又跑了一遍,遇到了如下的一个debug的错误提示框: 这个是什么 ...