CTSC1997-选课

描述

学校实行学分制。每门的必修课都有固定的学分,同时还必须获得相应的选修课程学分。学校开设了N(N<300)门的选修课程,每个学生可选课程的数量M是给定的。学生选修了这M门课并考核通过就能获得相应的学分。

在选修课程中,有些课程可以直接选修,有些课程需要一定的基础知识,必须在选了其它的一些课程的基础上才能选修。例如《Frontpage》必须在选修了《Windows操作基础》之后才能选修。我们称《Windows操作基础》是《Frontpage》的先修课。每门课的直接先修课最多只有一门。两门课也可能存在相同的先修课。每门课都有一个课号,依次为1,2,3,…。 例如:

表中1是2的先修课,2是3、4的先修课。如果要选3,那么1和2都一定已被选修过。   你的任务是为自己确定一个选课方案,使得你能得到的学分最多,并且必须满足先修课优先的原则。假定课程之间不存在时间上的冲突。

输入格式

输入文件的第一行包括两个整数N、M(中间用一个空格隔开)其中1≤N≤300,1≤M≤N。

以下N行每行代表一门课。课号依次为1,2,…,N。每行有两个数(用一个空格隔开),第一个数为这门课先修课的课号(若不存在先修课则该项为0),第二个数为这门课的学分。学分是不超过10的正整数。

输出格式

输出文件每行只有一个数。第一行是实际所选课程的学分总数。以下各行的数,表示所选课程的课号。

样例输入


样例输出


来自CTSC1997(好老的题…跟我一样大了都…)经典的树状动归,需要数据的可以给我发邮件,也可以到Vijos P1180提交.

我觉得树状动态规划常用来解决一些有传递的依赖问题.怎么说呢,有一点像背包吧,但又不相同.注意面对多叉树时,我们常常需要把其转化为二叉树来解决,根节点的儿子移到根节点的左子树上,根节点的兄弟移动到根节点的右子树上.然后什么都很方便了,状态定义状态转移都很方便了.另外需要注意的是转换后的二叉树的根节点的选定,这个十分重要,是整个动态规划的起点,我们通常用child[0]的值来作为跟节点.有关的详细的细节,这里有一份很不错的讲解ppt,我就不班门弄斧了.直接上代码!

 /*
ID: ringxu97
LANG: C++
TASK: 选课
*/
#include<cstdio>
#include<cstring>
#include<iostream>
#include<cmath>
#include<cstdlib>
#include<algorithm>
#include<vector>
using namespace std;
const int maxn=+;
int n,m;
int brother[maxn],child[maxn],score[maxn];
int opt[maxn][maxn];//opt[i][j]表示在i节点选择j门课程的最优值
bool res[maxn];
void read()//读入数据
{
score[]=;
scanf("%d%d",&n,&m);
score[n+]=;
memset(child,-,sizeof(child));
memset(brother,-,sizeof(brother));
for(int i=;i<=n;++i)
{
int tmp;
scanf("%d%d",&tmp,score+i);
//左儿子右兄弟储存
brother[i]=child[tmp];
child[tmp]=i;
}
} int solve(int root,int k)
{
if(root< || k<=)return ;
if(opt[root][k]>=)return opt[root][k];
opt[root][k]=solve(brother[root],k);//不选择根节点
for(int i=;i<k;++i)
{
if(opt[root][k]<solve(brother[root],i)+solve(child[root],k-i-)+score[root])//选着根节点
opt[root][k]=solve(brother[root],i)+solve(child[root],k-i-)+score[root];
}
return opt[root][k];
}
void path(int r,int k)//寻找方案
{
int &b=brother[r],&c=child[r];
if(b> && opt[b][k]==opt[r][k])
{
res[r]=;
path(b,k);
}
else
{
for(int i=;i<k;++i)
if(opt[r][k]==solve(brother[r],i)+solve(child[r],k-i-)+score[r])
{
res[r]=;
path(b,i);
path(c,k-i-);
return;
}
}
}
void print() //打印结果和方案
{
printf("%d\n",opt[][m+]);
path(,m+);
for(int i=;i<=n;++i)if(res[i])printf("%d\n",i);
}
int main()
{
freopen("input.in", "r", stdin);
read();
debug();
memset(opt,-,sizeof(opt));
memset(res,,sizeof(res));
solve(,m+);
print();
return ;
}

【树形动态规划】【CTSC1997】选课 解题报告的更多相关文章

  1. 【模拟题(电子科大MaxKU)】解题报告【树形问题】【矩阵乘法】【快速幂】【数论】

    目录: 1:一道简单题[树形问题](Bzoj 1827 奶牛大集会) 2:一道更简单题[矩阵乘法][快速幂] 3:最简单题[技巧] 话说这些题目的名字也是够了.... 题目: 1.一道简单题 时间1s ...

  2. [置顶] 刘汝佳《训练指南》动态规划::Beginner (25题)解题报告汇总

    本文出自   http://blog.csdn.net/shuangde800 刘汝佳<算法竞赛入门经典-训练指南>的动态规划部分的习题Beginner  打开 这个专题一共有25题,刷完 ...

  3. 树形动态规划(树状DP)小结

    树状动态规划定义 之所以这样命名树规,是因为树形DP的这一特殊性:没有环,dfs是不会重复,而且具有明显而又严格的层数关系.利用这一特性,我们可以很清晰地根据题目写出一个在树(型结构)上的记忆化搜索的 ...

  4. 【NOIP2015】提高day2解题报告

    题目: P1981跳石头 描述 一年一度的“跳石头”比赛又要开始了!这项比赛将在一条笔直的河道中进行,河道中分布着一些巨大岩石.组委会已经选择好了两块岩石作为比赛起点和终点.在起点和终点之间,有 N ...

  5. 【第40套模拟题】【noip2011_mayan】解题报告【map】【数论】【dfs】

    目录:1.潜伏者 [map] 2.Hankson的趣味题[数论]3.mayan游戏[dfs] 题目: 1. 潜伏者(spy.pas/c/cpp)[问题描述]R 国和S 国正陷入战火之中,双方都互派间谍 ...

  6. 2011 ACM-ICPC 成都赛区解题报告(转)

    2011 ACM-ICPC 成都赛区解题报告 首先对F题出了陈题表示万分抱歉,我们都没注意到在2009哈尔滨赛区曾出过一模一样的题.其他的话,这套题还是非常不错的,除C之外的9道题都有队伍AC,最终冠 ...

  7. ZOJ 1093 Monkey and Banana (LIS)解题报告

    ZOJ  1093   Monkey and Banana  (LIS)解题报告 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid= ...

  8. 【原创】leetCodeOj --- Sliding Window Maximum 解题报告

    天,这题我已经没有底气高呼“水”了... 题目的地址: https://leetcode.com/problems/sliding-window-maximum/ 题目内容: Given an arr ...

  9. poj1173 解题报告

    poj1173 解题报告2013-07-21 13:31 by 期待 ., 42 阅读, 0 评论, 收藏, 编辑 http://poj.org/problem?id=1173 发现此题资料甚少,斗胆 ...

随机推荐

  1. 面试题——分析从输入url到页面返回的过程(或者查询返回过程)

    1. You enter a URL into the browser(输入一个url地址) 2.The browser looks up the IP address for the domain ...

  2. js星级评分点击星级评论打分效果--收藏--转载

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  3. PHP 实现ajax的接收

    Ajax界面: 首先,理解本质,就是普通的一个提交在无刷新的情况下发出请求后得到响应,然后去针对你需要 的情况来做行为. <!DOCTYPE html> <html> < ...

  4. 安装php时,make步骤报错make: *** [ext/gd/gd.lo] Error 1

    安装PHP时,make步骤报错make: *** [ext/gd/gd.lo] Error 1 /usr/local/src/LAMP+memcahed+catci/php-5.4.0/ext/gd/ ...

  5. 017_bcp_bulk_openrowset

    017_bcp_bulk_openrowset --bcp*********************************************************************** ...

  6. Hibernate 性能优化之一级缓存

     1.一级缓存的生命周期     一级缓存在session中存放,只要打开session,一级缓存就存在了,当session关闭的时候,一级缓存就不存在了   2.一级缓存是依赖于谁存在的      ...

  7. VS2012 ActiveX控件_D接口添加方法事项

    自己写的是Clock控件,所以控件的接口是_DClock 使用向导添加方法后,会在紫色区域自动生成红色代码:(添加Hello方法) dispinterface _DClock { properties ...

  8. linux 命令及进程控制

    main.c  main.o/main.obj  main/main.exe          编译                连接 程序运行;      两步: gcc/g++  -c  mai ...

  9. thinkphp 文件下载实例 实现以及注意事项

            #下载        function download()        {             $id=$_GET['id'];              $file_name ...

  10. Android之Activity生命周期简介

    概述 有图有真相,所以先上图: 上图是从Android官网截下的Activity的生命周期流程图,结构非常清晰,它描述了Activity在其生命周期中所有可能发生的情况以及发生的先后顺序,下面就将结合 ...