夏普比率(Sharpe Ratio)
投资中有一个常规的特点,即投资标的的预期报酬越高,投资人所能忍受的波动风险越高;反之,预期报酬越低,波动风险也越低。所以理性的投资人选择投资标的与投资组合的主要目的为:在固定所能承受的风险下,追求最大的报酬;或在固定的预期报酬下,追求最低的风险。
1990年度诺贝尔经济学奖得主威廉-夏普(William Sharpe)以投资学最重要的理论基础CAPM(Capital Asset Pricing Model,资本资产定价模式)为出发,发展出名闻遐迩的夏普比率(Sharpe Ratio),用以衡量金融资产的绩效表现。威廉-夏普理论的核心思想是:理性的投资者将选择并持有有效的投资组合,即那些在给定的风险水平下使期望回报最大化的投资组合,或那些在给定期望回报率的水平上使风险最小化的投资组合。解释起来非常简单,他认为投资者在建立有风险的投资组合时,至少应该要求投资回报达到无风险投资的回报,或者更多。
夏普比率计算公式:=[E(Rp)-Rf]/σp
其中E(Rp):投资组合预期报酬率
Rf:无风险利率
σp:投资组合的标准差
目的是计算投资组合每承受一单位总风险,会产生多少的超额报酬。比率依据资本市场线(Capital MarketLine,CML)的观念而来,是市场上最常见的衡量比率。当投资组合内的资产皆为风险性资产时,适用夏普比率。夏普指数代表投资人每多承担一分风险,可以拿到几分报酬;若为正值,代表基金报酬率高过波动风险;若为负值,代表基金操作风险大过于报酬率。这样一来,每个投资组合都可以计算Sharpe ratio,即投资回报与多冒风险的比例,这个比例越高,投资组合越佳。
举例而言,假如国债的回报是3%,而您的投资组合预期回报是15%,您的投资组合的标准偏差是6%,那么用15%-3%,可以得出12%(代表您超出无风险投资的回报),再用12%÷6%=2,代表投资者风险每增长1%,换来的是2%的多余收益。
夏普理论告诉我们,投资时也要比较风险,尽可能用科学的方法以冒小风险来换大回报。所以说,投资者应该成熟起来,尽量避免一些不值得冒的风险。同时当您在投资时如缺乏投资经验与研究时间,可以让真正的专业人士(不是只会卖金融产品给你的SALES)来帮到您建立起适合自己的,可承受风险最小化的投资组合。这些投资组合可以通过Sharpe Ratio来衡量出风险和回报比例。
夏普比率(Sharpe Ratio)的更多相关文章
- 3星|《陈志武金融投资课》:金融改善社会,A股投资策略
从历史上的金融说起,介绍金融的基本知识.理念.大事.重要人物.也有一些A股投资策略和A股政策点评. 引用了不少学术研究成果做证据.讲历史的部分,功力比专业历史学者稍逊,毕竟这不是作者的专业. 我读后认 ...
- QM3_Statistics Concepts and Market Returns
Basic Concepts Terms Descriptive Statistics Describes the important aspects of large data sets. 统计 概 ...
- AI金融知识自学偏量化方向-目录0
前提: 统计学习(统计分析)和机器学习之间的区别 金融公司采用机器学习技术及招募相关人才 了解不同类型的机器学习 有监督学习 vs 无监督学习 迭代和评估 偏差方差权衡 结合有监督学习和无监督学习(半 ...
- CFA一级知识点总结
更多来自: www.vipcoursea.com Ethics 部分 Objective of codes and standard:永远是为了maintain public trust in ...
- 用深度学习LSTM炒股:对冲基金案例分析
英伟达昨天一边发布“全球最大的GPU”,一边经历股价跳水20多美元,到今天发稿时间也没恢复过来.无数同学在后台问文摘菌,要不要抄一波底嘞? 今天用深度学习的序列模型预测股价已经取得了不错的效果,尤其是 ...
- Statistical Concepts and Market Returns
Statistical Concepts and Market Returns Categories of statistics Descriptive statistics: used to sum ...
- Zipline Risk and Performance Metrics
Risk and Performance Metrics 风险和性能指标 The risk and performance metrics are summarizing values calcula ...
- zipline风险指标计算 (empyrical模块)
概述 量化中,我们经常会遇到各种量化指标的计算,对于zipline来说,也会对这部分计算进行处理,由于指标计算的通用性比较强,所以,zipline单独封装了 empyrical 这个模块,可以处理类似 ...
- 利用Python检验你的策略参数是否过拟合(转)
过拟合现象 一般来说,量化研究员在优化其交易策略参数时难免会面临这样一个问题:优化过后的策略在样本内表现一般来说均会超过其在样本外的表现,即参数过拟合.对于参数优化来说,由于优化时存在噪音,过拟合是不 ...
随机推荐
- ASP.NET面试
1.net中读写数据库需要用到那些类?他们的作用都是什么?答:DataSet:数据存储器.DataCommand:执行语句命令.DataAdapter:数据的集合,用语填充.2.介绍一下什么是Code ...
- 【开源java游戏框架libgdx专题】-12-开发工具-图片合成
TexturePackerGui工具: 1.工具使用: 首先看到texturepacker的界面 界面介绍: New pack:创建项目按钮,单击后输入文件名称,创建文件. Input directo ...
- HTML5 离线缓存
离线资源缓存 为了能够让用户在离线状态下继续访问 Web 应用,开发者需要提供一个 cache manifest 文件.这个文件中列出了所有需要在离线状态下使用的资源,浏览器会把这些资源缓存到本地. ...
- 自定义android精美聊天界面
编写精美聊天界面,那就肯定要有收到的消息和发送的消息. 首先还是编写主界面,修改activity_chat.xml中的代码,如下所示: <?xml version="1.0" ...
- [转]Delphi导出Excel的设置操作
procedure CreatRepSheet(SheetName:String;PageSize,PageLay:Integer); {新建Excel工作簿.进行页面设置} begin {新建Exc ...
- Mysql 应该选择什么引擎
对于如何选择存储引擎,可以简答的归纳为一句话:“除非需要用到某些INNODB 不具备的特性,并且没有其他办法可以替代,否则都应该选择INNODB 引擎”.例如:如果要用到全文索引,建议优先考虑INNO ...
- 动态内存分配(new)和释放(delete)
在之前我们所写过的程序中,所必需的内存空间的大小都是在程序执行之前就已经确定了.但如果我们需要内存大小为一个变量,其数值只有在程序运行时 (runtime)才能确定,例如有些情况下我们需要根据用户输入 ...
- javascript-Cookie的应用
在我平时开发网页的过程中,可能涉及到浏览器本地的存储,现在主流的浏览器存储方式有:cookie,直接读取xml,userData,H5 的LocalStorage等,Cookie存储数据有限,但对于数 ...
- mybatis 学习笔记(4) —— 批量新增数据
1.业务是从前台传入List<T> ,在controller层接受参数,并进行批量新增操作. 2.需要处理的细节 a) mybatis可以支持批量新增,注意数据表需要将主键设置成自增列. ...
- 无法解析属性“mode”的值。错误为: 枚举值必须是以下各值中的一个: RemoteOnly, On, Off。
Off首字母要大写,注意大小写 <customErrors mode="Off"> <error statusCode="404" ...