动态规划(斜率优化):[CEOI2004]锯木厂选址
锯木场选址(CEOI2004)
从山顶上到山底下沿着一条直线种植了n棵老树。当地的政府决定把他们砍下来。为了不浪费任何一棵木材,树被砍倒后要运送到锯木厂。
木材只能按照一个方向运输:朝山下运。山脚下有一个锯木厂。另外两个锯木厂将新修建在山路上。你必须决定在哪里修建两个锯木厂,使得传输的费用总和最小。假定运输每公斤木材每米需要一分钱。
任务
你的任务是写一个程序:
从标准输入读入树的个数和他们的重量与位置
计算最小运输费用
将计算结果输出到标准输出
输入
输入的第一行为一个正整数n——树的个数(2≤n≤20 000)。树从山顶到山脚按照1,2……n标号。接下来n行,每行有两个正整数(用空格分开)。第i+1行含有:wi——第i棵树的重量(公斤为单位)和 di——第i棵树和第i+1棵树之间的距离,1≤wi ≤10 000,0≤di≤10 000。最后一个数dn,表示第n棵树到山脚的锯木厂的距离。保证所有树运到山脚的锯木厂所需要的费用小于2000 000 000分。
输出
输出只有一行一个数:最小的运输费用。
样例
输入
9
1 2
2 1
3 3
1 1
3 2
1 6
2 1
1 2
1 1
输出
26
#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
const int maxn=;
long long W[maxn],F[maxn],D[maxn],X[maxn];
long long ans=;
int q[maxn],st,ed;
int main(){
#ifndef ONLINE_JUDGE
freopen("two.in","r",stdin);
freopen("two.out","w",stdout);
#endif
int n;
scanf("%d",&n);
for(int i=;i<=n;i++){
scanf("%lld%lld",&W[i],&D[i+]);
W[i]+=W[i-];D[i+]+=D[i];
X[i]=X[i-]+(D[i]-D[i-])*W[i-];
}
n+=;
X[n]=X[n-]+(D[n]-D[n-])*W[n-];
q[st]=;
for(int i=;i<n;i++){
while(st<ed){
if(W[q[st+]]*D[q[st+]]-W[q[st]]*D[q[st]]<=
D[i]*(W[q[st+]]-W[q[st]]))
st++;
else break;
}
ans=min(ans,X[n]+W[q[st]]*(D[q[st]]-D[i])+W[i]*(D[i]-D[n]));
while(st<ed){
if((W[i]*D[i]-W[q[ed]]*D[q[ed]])*(W[q[ed]]-W[q[ed-]])<=
(W[q[ed]]*D[q[ed]]-W[q[ed-]]*D[q[ed-]])*(W[i]-W[q[ed]]))
ed--;
else break;
}
q[++ed]=i;
}
printf("%lld\n",ans);
return ;
}
动态规划(斜率优化):[CEOI2004]锯木厂选址的更多相关文章
- luoguP4360 [CEOI2004]锯木厂选址
题目链接 luoguP4360 [CEOI2004]锯木厂选址 题解 dis:后缀和 sum:前缀和 补集转化,减去少走的,得到转移方程 dp[i] = min(tot - sumj * disj - ...
- P4360 [CEOI2004]锯木厂选址
P4360 [CEOI2004]锯木厂选址 这™连dp都不是 \(f_i\)表示第二个锯木厂设在\(i\)的最小代价 枚举1号锯木厂 \(f_i=min_{0<=j<i}(\sum_{i= ...
- 2018.08.28 洛谷P4360 [CEOI2004]锯木厂选址(斜率优化dp)
传送门 一道斜率优化dp入门题. 是这样的没错... 我们用dis[i]表示i到第三个锯木厂的距离,sum[i]表示前i棵树的总重量,w[i]为第i棵树的重量,于是发现如果令第一个锯木厂地址为i,第二 ...
- 洛谷P4360 [CEOI2004]锯木厂选址(斜率优化)
传送门 我可能根本就没有学过斜率优化…… 我们设$dis[i]$表示第$i$棵树到山脚的距离,$sum[i]$表示$w$的前缀和,$tot$表示所有树运到山脚所需要的花费,$dp[i]$表示将第二个锯 ...
- [BZOJ2684][CEOI2004]锯木厂选址
BZOJ权限题! Description 从山顶上到山底下沿着一条直线种植了n棵老树.当地的政府决定把他们砍下来.为了不浪费任何一棵木材,树被砍倒后要运送到锯木厂. 木材只能按照一个方向运输:朝山下运 ...
- LG4360 [CEOI2004]锯木厂选址
题意 原题来自:CEOI 2004 从山顶上到山底下沿着一条直线种植了 n 棵老树.当地的政府决定把他们砍下来.为了不浪费任何一棵木材,树被砍倒后要运送到锯木厂. 木材只能朝山下运.山脚下有一个锯木厂 ...
- cogs 362. [CEOI2004]锯木厂选址
★★★ 输入文件:two.in 输出文件:two.out 简单对比 时间限制:0.1 s 内存限制:32 MB 从山顶上到山底下沿着一条直线种植了n棵老树.当地的政府决定把他们砍下来. ...
- [CEOI2004]锯木厂选址 斜率优化DP
斜率优化DP 先考虑朴素DP方程, f[i][k]代表第k个厂建在i棵树那里的最小代价,最后答案为f[n+1][3]; f[i][k]=min(f[j][k-1] + 把j+1~i的树都运到i的代价) ...
- 洛谷4360[CEOI2004]锯木厂选址 (斜率优化+dp)
qwq 我感觉这都已经不算是斜率优化\(dp\)了,感觉更像是qwq一个\(下凸壳优化\)转移递推式子. qwq 首先我们先定义几个数组 \(sw[i]\)表示\(w[i]\)的前缀和 \(val[i ...
随机推荐
- 10.23 noip模拟试题
尼玛蛋pdf好难粘 直接写了 T1 /*开始写wa了 我真弱2333 关于p的排序规则不只是差值 为了字典序最小 还要拍别的*/ #include<cstdio> #include< ...
- 当升级新版本的时候,从新加载新版本的js的方法
<script src="../Script/SmcScript.js?version='<%=Smc20.Web.WebForm.Public.WebConst.WEBJSCA ...
- windows下apache+php+mysql配置
Apache 2.4.10(文件:httpd-2.4.10-win64-VC11.zip) php 5.6.26 (文件:php-5.6.25-Win32-VC11-x64.zip) mysql 5. ...
- U3D Trigger事件触发
使用Trigger事件触发,可以达到虽然触发了,可是不改变任何效果. 这个是进入时候触发的: void OnTriggerEnter2D(Collider2D other) { print (othe ...
- Android平台的四大天王:Activity, Service, ContentProvider, BroadcastReceiver
今天开始要自学android,刚看到百度知道上面这段话,觉得不错(不过已经是2011年8月的回答了): Android系统的手机的每一个你能看到的画面都是一个activity,它像是一个画布,随你在上 ...
- IE浏览器设置
- Nhibernate 智能提示 以及其他类库智能提示
Nhibernate 的智能提示 Nhibernate.dll 放到以下路径 C:\Program Files (x86)\Reference Assemblies\Microsoft\Framewo ...
- Python:函数定义
#!/usr/bin/python3 #函数 def add(a,b): return a+b print("add(2,5) = ",add(2,5)) def add2(a,b ...
- OpenCV中Mat的详解
每次碰到Mat都得反复查具体的用法,网上的基础讲解不多,难得看到一篇,赶快转来收藏~ 原文地址:http://www.opencvchina.com/thread-1039-1-1.html 目标 我 ...
- css3字阴影text-shadow
看到text-shadow这句代码,眼尖的同学是不是觉得很熟悉?没错,前面我们已经学习过<css3基础教程五边框box-shadow>,而且这两者非常相近,只要以前的课程学好了,text- ...