图论(网络流,二分图最小点权覆盖):POJ 2125 Destroying The Graph
Description
Alice assigns two costs to each vertex: Wi+ and Wi-. If Bob removes all arcs incoming into the i-th vertex he pays Wi+ dollars to Alice, and if he removes outgoing arcs he pays Wi- dollars.
Find out what minimal sum Bob needs to remove all arcs from the graph.
Input
file describes the graph Alice has drawn. The first line of the input
file contains N and M (1 <= N <= 100, 1 <= M <= 5000). The
second line contains N integer numbers specifying Wi+. The third line defines Wi- in a similar way. All costs are positive and do not exceed 106
. Each of the following M lines contains two integers describing the
corresponding arc of the graph. Graph may contain loops and parallel
arcs.
Output
the first line of the output file print W --- the minimal sum Bob must
have to remove all arcs from the graph. On the second line print K ---
the number of moves Bob needs to do it. After that print K lines that
describe Bob's moves. Each line must first contain the number of the
vertex and then '+' or '-' character, separated by one space. Character
'+' means that Bob removes all arcs incoming into the specified vertex
and '-' that Bob removes all arcs outgoing from the specified vertex.
Sample Input
3 6
1 2 3
4 2 1
1 2
1 1
3 2
1 2
3 1
2 3
Sample Output
5
3
1 +
2 -
2 +
#include <iostream>
#include <cstring>
#include <cstdio>
#include <queue>
using namespace std;
const int maxn=;
const int maxm=;
const int INF=;
int cnt,tot,fir[maxn],fron[maxn],dis[maxn];
int to[maxm],nxt[maxm],gap[maxn],path[maxn];
int cap[maxm];queue<int>q; struct Max_Flow{
void Init(int tot_=){
tot=tot_;cnt=;
memset(fir,,sizeof(fir));
memset(dis,,sizeof(dis));
memset(gap,,sizeof(gap));
} void add(int a,int b,int c){
nxt[++cnt]=fir[a];
fir[a]=cnt;
cap[cnt]=c;
to[cnt]=b;
} void addedge(int a,int b,int c){
add(a,b,c);
add(b,a,);
} bool BFS(int s,int t){
dis[t]=;q.push(t);
while(!q.empty()){
int x=q.front();q.pop();
for(int i=fir[x];i;i=nxt[i])
if(!dis[to[i]]){
dis[to[i]]=dis[x]+;
q.push(to[i]);
}
}
return dis[s];
} int Aug(int s,int t,int &p){
int f=INF;
while(p!=s){
f=min(f,cap[path[p]]);
p=to[path[p]^];
}p=t;
while(p!=s){
cap[path[p]]-=f;
cap[path[p]^]+=f;
p=to[path[p]^];
}
return f;
} int ISAP(int s,int t){
if(!BFS(s,t))return ;
for(int i=s;i<=t;i++)fron[i]=fir[i];
for(int i=s;i<=t;i++)gap[dis[i]]+=;
int p=s,ret=;
while(dis[s]<=tot){
if(p==t)ret+=Aug(s,t,p); for(int &i=fron[p];i;i=nxt[i])
if(cap[i]&&dis[p]==dis[to[i]]+){
path[p=to[i]]=i;
break;
} if(!fron[p]){
if(--gap[dis[p]]==)
break;
int Min=tot;
for(int i=fir[p];i;i=nxt[i])
if(cap[i])Min=min(Min,dis[to[i]]);
gap[dis[p]=Min+]+=;fron[p]=fir[p];
if(p!=s)p=to[path[p]^];
}
}
return ret;
}
}isap; int n,m,top;
int tag[maxn],st[maxn];
void DFS(int x){
tag[x]=;
for(int i=fir[x];i;i=nxt[i])
if(cap[i]&&!tag[to[i]])DFS(to[i]);
} int main(){
scanf("%d%d",&n,&m);
int s=,t=*n+;
isap.Init(t+);
for(int i=,v;i<=n;i++){
scanf("%d",&v);
isap.addedge(s,i,v);
}
for(int i=,v;i<=n;i++){
scanf("%d",&v);
isap.addedge(i+n,t,v);
}
for(int i=,a,b;i<=m;i++){
scanf("%d%d",&a,&b);
isap.addedge(b,a+n,INF);
} printf("%d\n",isap.ISAP(s,t));
DFS();
for(int i=;i<=n;i++){
if(!tag[i])
st[++top]=i;
if(tag[i+n])
st[++top]=i+n;
}
printf("%d\n",top);
for(int i=;i<=top;i++){
if(st[i]<=n)
printf("%d +\n",st[i]);
else
printf("%d -\n",st[i]-n);
}
return ;
}
图论(网络流,二分图最小点权覆盖):POJ 2125 Destroying The Graph的更多相关文章
- POJ 2125 Destroying the Graph 二分图最小点权覆盖
Destroying The Graph Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 8198 Accepted: 2 ...
- POJ 2125 Destroying The Graph (二分图最小点权覆盖集+输出最小割方案)
题意 有一个图, 两种操作,一种是删除某点的所有出边,一种是删除某点的所有入边,各个点的不同操作分别有一个花费,现在我们想把这个图的边都删除掉,需要的最小花费是多少. 思路 很明显的二分图最小点权覆盖 ...
- POJ 2125 Destroying The Graph 二分图 最小点权覆盖
POJ2125 题意简述:给定一个有向图,要通过某些操作删除所有的边,每一次操作可以选择任意一个节点删除由其出发的所有边或者通向它的所有边,两个方向有不同的权值.问最小权值和的解决方案,要输出操作. ...
- POJ2125 Destroying The Graph(二分图最小点权覆盖集)
最小点权覆盖就是,对于有点权的有向图,选出权值和最少的点的集合覆盖所有的边. 解二分图最小点权覆盖集可以用最小割: vs-X-Y-vt这样连边,vs和X部点的连边容量为X部点的权值,Y部和vt连边容量 ...
- poj 3308 Paratroopers(二分图最小点权覆盖)
Paratroopers Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 8954 Accepted: 2702 Desc ...
- POJ2125 Destroying The Graph 二分图 + 最小点权覆盖 + 最小割
思路来源:http://blog.csdn.net/lenleaves/article/details/7873441 求最小点权覆盖,同样求一个最小割,但是要求出割去了那些边, 只要用最终的剩余网络 ...
- poj 2125 Destroying The Graph (最小点权覆盖)
Destroying The Graph http://poj.org/problem?id=2125 Time Limit: 2000MS Memory Limit: 65536K ...
- POJ - 2125 Destroying The Graph (最小点权覆盖)
题意:给一张图,现在要删去所有的边,删去一个点的所有入边和所有出边都有其对应\(W_{i+}\)和\(W_{i-}\).求删去该图的最小花费,并输出解 分析:简而言之就是用最小权值的点集去覆盖所有的边 ...
- POJ3308 Paratroopers(最小割/二分图最小点权覆盖)
把入侵者看作边,每一行每一列都是点,选取某一行某一列都有费用,这样问题就是选总权最小的点集覆盖所有边,就是最小点权覆盖. 此外,题目的总花费是所有费用的乘积,这时有个技巧,就是取对数,把乘法变为加法运 ...
- POJ 2125 Destroying The Graph [最小割 打印方案]
Destroying The Graph Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 8311 Accepted: 2 ...
随机推荐
- WPF DataGrid某列使用多绑定后该列排序失效,列上加入 SortMemberPath 设置即可.
WPF DataGrid某列使用多绑定后该列排序失效 2011-07-14 10:59hdongq | 浏览 1031 次 悬赏:20 在wpf的datagrid中某一列使用了多绑定,但是该列排序失 ...
- isAssignableFrom与instanceof的区别
1.isAssignableFrom针对的是class对象: 2.instanceof是实例. isAssignableFrom是用来判断一个类Class1和另一个类Class2是否相同或是另一个类的 ...
- python s12 day3
python s12 day3 深浅拷贝 对于 数字 和 字符串 而言,赋值.浅拷贝和深拷贝无意义,因为其永远指向同一个内存地址. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ...
- display:table- cell属性的练习
display:table- cell属性指让标签元素以表格单元格的形式呈现,类似于td标签.目前IE8+以及其他现代浏览器都是支持此属性的,但是IE6/7只能对你说 sorry了,这一事实也是大大制 ...
- windows下apache+php+mysql配置
Apache 2.4.10(文件:httpd-2.4.10-win64-VC11.zip) php 5.6.26 (文件:php-5.6.25-Win32-VC11-x64.zip) mysql 5. ...
- ORACLE多表关联UPDATE 语句
转载至:http://blog.itpub.net/29378313/viewspace-1064069/ 为了方便起见,建立了以下简单模型,和构造了部分测试数据:在某个业务受理子系统BSS中, SQ ...
- javascript的框架演化
说起javascript不同的人或许有不同的看法,一些资深后台程序员在刚开始的时候根本没有把它当作是一门编程语言,但是随着后面js框架的出现,以及面向对象的程序设计,还有原型,闭包的不断使用,后台程序 ...
- SGU 124.Broken line
时间限制:0.25s 空间限制:4M 题意: 给出n条线段和一个点,保证所有线段平行X轴或Y,并且闭合成一个多边形.判断这个点的位置是在多边形上,还是多边形内,还是多边形外. solution: 由于 ...
- ARM平台的内核模块编写与安装
Linux 系统一直在不断地发展,而相应地她的代码量也在不断的增大,直接导致的结果就是她的可执行镜像就变得越来越庞大.那么问题来了,如果将所有的镜像文件一次性地复制到内存中,那么所需的空间就非常 ...
- cetos 6.3 安装 apache+mysql+php
1.安装 apache 服务器 yum install httpd 启动服务 service httpd start or /etc/init.d/httpd start 2.安装 mysql 数 ...