聚类算法,无监督学习的范畴,没有明确的类别信息。

  给定n个训练样本{x1,x2,x3,...,xn}

  kmeans算法过程描述如下所示:

  1.创建k个点作为起始质心点,c1,c2,...,ck
  2.重复以下过程直到收敛

    遍历所有样本xi
      遍历所有质心cj
        记录质心与样本间的距离
      将样本分配到距离其最近的质心
    对每一个类,计算所有样本的均值并将其作为新的质心

  下图展示了对n个样本点进行K-means聚类的效果,这里k取2。

  需要注意的几点:

  k个点怎么取

  1.选择距离尽可能远的k个点

    首先随机选一个点p1作为第一个簇的质心,然后选距离这个点p1最远的点p2作为第二个簇的质心,

  再选择距离前面p1和p2最短距离的最大值的点作为第三个簇的质心。max(min(d(p1),d(p2)))

  以此类推,选k个点。

  2.选用层次聚类或者Canopy算法先进行初始聚类,利用这些类簇的中心点作为Kmeans初始类簇的质心

   要求:样本相对较小,例如数百到数千(层次聚类开销较大);K相对于样本大小较小

  k值怎么确定

  ps:每个类称为簇,则簇的直径:簇内任意两点间的最大距离,簇的半径:簇内点到簇质心的最大距离

  给定一个合适的簇指标,可以是簇平均半径、簇平均直径、或者平均质心距离的加权平均值(权重可以为簇内点的个数)

  分别取k值在1,2,4,8,16....

  基本会符合下图,当簇个数低于真实个数时,簇指标会随簇个数的增长快速下降,当簇个数高于真实个数时,簇指标会趋于平稳

  找到图中所示转折点,先确定k的大致范围,再通过二分查找确定k的值

  

  算法停止条件

  1.规定一个迭代次数,达到即停止

  2.目标函数收敛

  求上述目标函数的最小值

  参考:http://www.cnblogs.com/jerrylead/archive/2011/04/06/2006910.html

K-means聚类的更多相关文章

  1. ML: 聚类算法-K均值聚类

    基于划分方法聚类算法R包: K-均值聚类(K-means)                   stats::kmeans().fpc::kmeansruns() K-中心点聚类(K-Medoids) ...

  2. 【转】算法杂货铺——k均值聚类(K-means)

    k均值聚类(K-means) 4.1.摘要 在前面的文章中,介绍了三种常见的分类算法.分类作为一种监督学习方法,要求必须事先明确知道各个类别的信息,并且断言所有待分类项都有一个类别与之对应.但是很多时 ...

  3. 5-Spark高级数据分析-第五章 基于K均值聚类的网络流量异常检测

    据我们所知,有‘已知的已知’,有些事,我们知道我们知道:我们也知道,有 ‘已知的未知’,也就是说,有些事,我们现在知道我们不知道.但是,同样存在‘不知的不知’——有些事,我们不知道我们不知道. 上一章 ...

  4. 机器学习实战5:k-means聚类:二分k均值聚类+地理位置聚簇实例

    k-均值聚类是非监督学习的一种,输入必须指定聚簇中心个数k.k均值是基于相似度的聚类,为没有标签的一簇实例分为一类. 一 经典的k-均值聚类 思路: 1 随机创建k个质心(k必须指定,二维的很容易确定 ...

  5. Python实现kMeans(k均值聚类)

    Python实现kMeans(k均值聚类) 运行环境 Pyhton3 numpy(科学计算包) matplotlib(画图所需,不画图可不必) 计算过程 st=>start: 开始 e=> ...

  6. 机器学习理论与实战(十)K均值聚类和二分K均值聚类

    接下来就要说下无监督机器学习方法,所谓无监督机器学习前面也说过,就是没有标签的情况,对样本数据进行聚类分析.关联性分析等.主要包括K均值聚类(K-means clustering)和关联分析,这两大类 ...

  7. R与数据分析旧笔记(十五) 基于有代表性的点的技术:K中心聚类法

    基于有代表性的点的技术:K中心聚类法 基于有代表性的点的技术:K中心聚类法 算法步骤 随机选择k个点作为"中心点" 计算剩余的点到这个k中心点的距离,每个点被分配到最近的中心点组成 ...

  8. 第十篇:K均值聚类(KMeans)

    前言 本文讲解如何使用R语言进行 KMeans 均值聚类分析,并以一个关于人口出生率死亡率的实例演示具体分析步骤. 聚类分析总体流程 1. 载入并了解数据集:2. 调用聚类函数进行聚类:3. 查看聚类 ...

  9. K均值聚类的失效性分析

    K均值聚类是一种应用广泛的聚类技术,特别是它不依赖于任何对数据所做的假设,比如说,给定一个数据集合及对应的类数目,就可以运用K均值方法,通过最小化均方误差,来进行聚类分析. 因此,K均值实际上是一个最 ...

  10. 机器学习算法与Python实践之(五)k均值聚类(k-means)

    机器学习算法与Python实践这个系列主要是参考<机器学习实战>这本书.因为自己想学习Python,然后也想对一些机器学习算法加深下了解,所以就想通过Python来实现几个比较常用的机器学 ...

随机推荐

  1. 科研论文提交流程与常见问题(EDAS 系统提交)

    第一步 注册文章(Registering your Paper) 如上图,点击菜单中的submit paper按钮,会列出所有的会议和期刊,选择一个你要投稿的期刊或者会议,例如选择第一个2013 IE ...

  2. zookeeper集群环境安装配置

    众所周知,Zookeeper有三种不同的运行环境,包括:单机环境.集群环境和集群伪分布式环境 在此介绍的是集群环境的安装配置 一.下载: http://apache.fayea.com/zookeep ...

  3. linux环境下deb格式 转换成rpm格式

    linux环境下deb格式 转换成rpm格式 使用alien工具转换deb格式到rpm格式 alien_8.87.tar.gz 下载alien_8.87.tar.gz [root@mysqlnode2 ...

  4. 启动tomcat时报classpath not found

    启动tomcat时报classpath  not found 原因是缺包,首先查看tomcat安装地址,然后找到webapps目录下,找到该项目,看lib下是否缺包,不能单纯的看项目下是否缺包.

  5. nginx 代理概念理解

    学习nginx http://www.nginx.cn/nginx-how-to nginx官方定义: Nginx 是一个高性能的 Web 和反向代理服务器. 首先明确一个概念 反向代理 反向代理(R ...

  6. sql第一课笔记

    这是我看了imooc的视频教程之后重新写的笔记. 虽然之前也是学习过SQL Server数据库,但是也是忘记得差不多了.现在重新捡起来,安装一次数据库练习,使用的是mysql. 第一课是最简单的创建, ...

  7. php动态分页类

    <?php /** * 页面名称:cls_page.php */ class Page { private $each_disNums; //每页显示的条目数 private $nums; // ...

  8. Swift3.0 更新后出现比较运算符方法

    在将项目更新到swift3.0之后,在一些controller头部会出现 比较运算符的方法 // FIXME: comparison operators with optionals were rem ...

  9. MVC 无法将类型“System.Collections.Generic.List<AnonymousType#1>”隐式转换为“System.Collections.Generic.IList<Mvc3Modeltest.Models.Movie>”。存在一个显式转换(是否缺少强制转换?))

    1.问题: 2.解决方案:强制指定类型. 解决之.

  10. 从零开始学习jquery (一)

    一.jquery是什么 Jquery是继prototype之后又一个优秀的Javascript库.它是轻量级的js库 ,它兼容CSS3,还兼容各种浏览器(IE 6.0+, FF 1.5+, Safar ...