Time Limit: 3000 ms Memory Limit: 256 MB

description

​ 神犇GJS虐完数论后给zzHGR出了一个数论题。

​ 给定n,m,求1≤x≤n,1≤y≤m,且gcd(x,y)为质数的(x,y)有多少对。

​ zzHGR必然不会了,于是向你来请教……

​ 多组输入。

input

​ 第一行一个整数T,表述数据组数。

​ 接下来T行,每行两个正整数,表示n,m。

output

​ T行,每行一个整数表示第i组数据的结果

sample input

2
10 10
100 100

sample output

30
2791

HINT

​ \(T=10000 ,n,m≤10^7\)


反演的第一题!!啊哈哈哈哈哈哈哈超级高兴!

咳咳

首先写出表达式

相当于求(这里默认\(n<m\) )

\[\begin{aligned}
ans &= \sum\limits_{i=1}^{n}\sum\limits_{j=1}^{n} [ gcd(i , j) = prime ]\\
&=\sum\limits_{p=prime}^{}\sum\limits_{i=1}^{n/p}\sum\limits_{j=1}^{n/p} [ gcd(i , j) = 1 ]\\
&=\sum\limits_{p=prime}^{}\sum\limits_{i=1}^{n/p}\sum\limits_{j=1}^{m/p} \sum\limits_{d|i, d|j} \mu(d)&(\sum\limits_{d|gcd(i,j)}\mu(d) [gcd(i,j) = 1])\\
&=\sum\limits_{p=prime}^{}\sum\limits_{p|k}^{k<=n} \mu(\frac{k}{p}) * \lfloor \frac{n}{k}\rfloor * \lfloor\frac{m}{k}\rfloor&(k = pd)\\
\\
&然后。。观察一下前两个sigma我们先枚举了p然后再枚举了p在范围内的倍数。。\\&那。。。不就是枚举了所有范围内的数吗哈!哈!哈!\\
\\
&=\sum\limits_{k<=n} g(k) * \lfloor \frac{n}{k}\rfloor * \lfloor\frac{m}{k}\rfloor& (g(k)=\sum\limits_{p=prime}^{p|k}\mu(\frac{k}{p}))\\
\end{aligned}
\]

费劲千辛万苦搞到这条看起来十分友善的式子,那么剩下的就是……

**考虑\(g(k)\)怎么求 **

(\(g(k) = \sum\limits_{p=prime}^{p|k}\mu(\frac{k}{p})\),我们设\(k = p_0 * x\),其中\(p_0\)为质数)

那么就有两种情况:

1.如果\(p_0|x\)

​ 如果说\(p_0=p\),那么\(\mu(\frac{k}{p}) = \mu(k)\)

​ 如果说\(p_0\ne p\),那么\(p_0 * x\)就有质数平方因子了,而除以\(p\)又不能将其消掉,所以\(\mu\)值为0

​ 综上就是\(g(k) = \mu(k)\)

2.如果\(p0\)不是\(x\)的因子

​ 如果说\(p_0 = p\),和上面一样

​ 如果说\(p_0 \ne p\),

​ 那么由于\(\mu\)是积性函数,且\(p_0\)与\(\frac{x}{p}\)互质,所以\(\mu(\frac{k}{p}) = \mu(\frac{p_0 * x}{p}) = \mu(p_0) * \mu(\frac{x}{p})\)

​ 然后把\(\mu(p_0)\)提前我们就可以发现后面的式子其实就是\(g(x)\),而\(\mu(p_0) = -1\)

​ 所以此时\(\mu(\frac{k}{p}) = -g(x)\)

​ 综上就是\(g(k) = \mu(k) - g(x)\),其中\(x * p_0 = k\)且\(p_0\)为质数

然后我们就可以十分愉快地将\(g(k)\)筛出来啦

然而是多组数据

接下来再来枚举……稳稳的T啊……

咋办嘞。。显然要让求\(f(x)\)变快啊,然后就发现因为后面两个东西是下取整

下取整。。那就说明有很多数其实弄到最后是一样的

和n/i下取整一样的数最大是n/(n/i),下一个区间的开始刚好就是最大的那个数+1

然后就考虑到可以用前缀和来搞一下,瞬间舒服ovo

然后就十分愉快地做完啦ovo


#include<iostream>
#include<cstdio>
#include<cstring>
#define ll long long
using namespace std;
const int MAXN=1e7+10;
int miu[MAXN],p[MAXN],g[MAXN],sum[MAXN];
bool vis[MAXN];
ll ans;
int n,m,T,cnt,pos;
int prework(int n); int main(){
#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
#endif
scanf("%d",&T);
prework(10000000);
for (int o=1;o<=T;++o){
scanf("%d%d",&n,&m);
if (n>m) swap(n,m);
ans=0;
for (int i=1;i<=n;i=pos+1){
pos=min(n/(n/i),m/(m/i));
ans+=(ll)(sum[pos]-sum[i-1])*(n/i)*(m/i);
}
printf("%lld\n",ans);
}
} int prework(int n){
memset(vis,0,sizeof(vis));
miu[1]=1;
cnt=0;
for (int i=2;i<=n;++i){
if (!vis[i]){
p[++cnt]=i;
miu[i]=-1; g[i]=1;
}
for (int j=1;j<=cnt&&i*p[j]<=n;++j){
vis[i*p[j]]=1;
if (i%p[j]){
miu[i*p[j]]=-miu[i];
g[i*p[j]]=miu[i]-g[i];
}
else{
miu[i*p[j]]=0,g[i*p[j]]=miu[i];
break;
}
}
}
for (int i=1;i<=n;++i)
sum[i]=sum[i-1]+g[i];
}

【bzoj2820】GCD的更多相关文章

  1. 【BZOJ2820】YY的GCD(莫比乌斯反演)

    [BZOJ2820]YY的GCD(莫比乌斯反演) 题面 讨厌权限题!!!提供洛谷题面 题解 单次询问\(O(n)\)是做过的一模一样的题目 但是现在很显然不行了, 于是继续推 \[ans=\sum_{ ...

  2. 【BZOJ2820】YY的GCD

    [BZOJ2820]YY的GCD Description 神犇YY虐完数论后给傻×kAc出了一题 给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的( ...

  3. 【UVa11426】GCD - Extreme (II)(莫比乌斯反演)

    [UVa11426]GCD - Extreme (II)(莫比乌斯反演) 题面 Vjudge 题解 这.. 直接套路的莫比乌斯反演 我连式子都不想写了 默认推到这里把.. 然后把\(ans\)写一下 ...

  4. 【BZOJ2818】Gcd(莫比乌斯反演)

    [BZOJ2818]Gcd(莫比乌斯反演) 题面 Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的 数对(x,y)有多少对. Input 一个整数N Ou ...

  5. 【CJOJ2512】gcd之和(莫比乌斯反演)

    [CJOJ2512]gcd之和(莫比乌斯反演) 题面 给定\(n,m(n,m<=10^7)\) 求 \[\sum_{i=1}^n\sum_{j=1}^mgcd(i,j)\] 题解 首先把公因数直 ...

  6. 【HDU1695】GCD(莫比乌斯反演)

    [HDU1695]GCD(莫比乌斯反演) 题面 题目大意 求\(a<=x<=b,c<=y<=d\) 且\(gcd(x,y)=k\)的无序数对的个数 其中,你可以假定\(a=c= ...

  7. 【bzoj2818】: Gcd 数论-欧拉函数

    [bzoj2818]: Gcd 考虑素数p<=n gcd(xp,yp)=p 当 gcd(x,y)=1 xp,yp<=n满足条件 p对答案的贡献: 预处理前缀和就好了 /* http://w ...

  8. 【bzoj2818】Gcd

    2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 4344  Solved: 1912[Submit][Status][Discuss ...

  9. 【反演复习计划】【bzoj2820】YY的GCD

    这题跟2818一样的,只不过数据水一点,可以用多一个log的办法水过去…… 原题意思是求以下式子:$Ans=\sum\limits_{isprime(p)}\sum\limits_{i=1}^{a}\ ...

随机推荐

  1. 洛谷 P1486 [NOI2004]郁闷的出纳员【Treap】题解+AC代码

    题目描述 OIER公司是一家大型专业化软件公司,有着数以万计的员工.作为一名出纳员,我的任务之一便是统计每位员工的工资.这本来是一份不错的工作,但是令人郁闷的是,我们的老板反复无常,经常调整员工的工资 ...

  2. linux 下安装php curl扩展

    方法一 安装cURL wget https://curl.haxx.se/download/curl-7.53.1.tar.gz tar -zxf curl-7.17.1.tar.gz ./confi ...

  3. Java JMS 程序基础 与 ActiveMQ 安装(一)

    一 ActiveMQ安装 从Apache官网上下载 ActivieMQ的安装包 apache-activemq-5.9.1-bin.tar.gz, 并拷贝到linux的安装目录解压 # tar -zx ...

  4. HTML5-svg圆形饼状图进度条实现原理

    <svg width="440" height="440" viewbox="0 0 440 440"> <circle ...

  5. Linux常用命令详解(二) -- 查找常用命令

    locate:    作用:在后台数据库中按文件名搜索,搜索速度更快    命令格式:locate 文件名    选项或参数:            -l    num(要显示的行数)         ...

  6. js利用闭包封装自定义模块的几种方法

    1.自定义模块: 具有特定功能的js文件 将所有的数据和功能都封装在一个函数的内部 只向外暴露一个包含有n个方法的对象或者函数 模块使用者只需要通过模块暴露的对象调用方法来实现相对应的功能 1.利用函 ...

  7. java中的Collection集合类

    随着1998年JDK 1.2的发布,同时新增了常用的Collections集合类,包含了Collection和Map接口.而Dictionary类是在1996年JDK 1.0发布时就已经有了.它们都可 ...

  8. 2道acm简单题(2013):1.(时分秒)时间相减;2.主持人和N-1个人玩游戏,每个人说出自己认识的人数,判断其中是否有人说谎。

    /*1.题目:输入一个数,代表要检测的例子的个数,每个例子中:输入两个时间(格式HH:MM : SS),前面时间减去后面时间,输出在时钟上显示的时间,格式一样,如果是以为数字的前面补零.*//**思路 ...

  9. 简单的GIT上传

    简单的GIT上传 上传项目时先新建一个 文件夹 mkdir test 然后在切换到test文件夹中然后把github 中的项目拷贝下来 git glone url 然后git init 查看文件 然后 ...

  10. 【Unity3D】Unity3D开发《我的世界》之五、创建无限地形(视频)

    转载请注明出处:http://www.cnblogs.com/shamoyuu/p/unity_minecraft_05.html 一.导入Unity3D自带的第一人称角色控制器 直接导入就行,我们用 ...