【洛谷2986】【USACO10MAR】伟大的奶牛聚集
题面
题目描述
Bessie is planning the annual Great Cow Gathering for cows all across the country and, of course, she would like to choose the most convenient location for the gathering to take place.
Each cow lives in one of N (1 <= N <= 100,000) different barns (conveniently numbered 1..N) which are connected by N-1 roads in such a way that it is possible to get from any barn to any other barn via the roads. Road i connects barns A_i and B_i (1 <= A_i <= N; 1 <= B_i <= N) and has length L_i (1 <= L_i <= 1,000). The Great Cow Gathering can be held at any one of these N barns. Moreover, barn i has C_i (0 <= C_i <= 1,000) cows living in it.
When choosing the barn in which to hold the Cow Gathering, Bessie wishes to maximize the convenience (which is to say minimize the inconvenience) of the chosen location. The inconvenience of choosing barn X for the gathering is the sum of the distances all of the cows need to travel to reach barn X (i.e., if the distance from barn i to barn X is 20, then the travel distance is C_i*20). Help Bessie choose the most convenient location for the Great Cow
Gathering.
Consider a country with five barns with [various capacities] connected by various roads of varying lengths. In this set of barns, neither barn 3 nor barn 4 houses any cows.
1 3 4 5
@--1--@--3--@--3--@[2]
[1] |
2 | @[1] 2 Bessie can hold the Gathering in any of five barns; here is the table of inconveniences calculated for each possible location:
Gather ----- Inconvenience ------
Location B1 B2 B3 B4 B5 Total
1 0 3 0 0 14 17
2 3 0 0 0 16 19
3 1 2 0 0 12 15
4 4 5 0 0 6 15
5 7 8 0 0 0 15
If Bessie holds the gathering in barn 1, then the inconveniences from each barn are:
Barn 1 0 -- no travel time there!
Barn 2 3 -- total travel distance is 2+1=3 x 1 cow = 3 Barn 3 0 -- no cows there!
Barn 4 0 -- no cows there!
Barn 5 14 -- total travel distance is 3+3+1=7 x 2 cows = 14 So the total inconvenience is 17.
The best possible convenience is 15, achievable at by holding the Gathering at barns 3, 4, or 5.
Bessie正在计划一年一度的奶牛大集会,来自全国各地的奶牛将来参加这一次集会。当然,她会选择最方便的地点来举办这次集会。
每个奶牛居住在 N(1<=N<=100,000) 个农场中的一个,这些农场由N-1条道路连接,并且从任意一个农场都能够到达另外一个农场。道路i连接农场A_i和B_i(1 <= A_i <=N; 1 <= B_i <= N),长度为L_i(1 <= L_i <= 1,000)。集会可以在N个农场中的任意一个举行。另外,每个牛棚中居住者C_i(0 <= C_i <= 1,000)只奶牛。
在选择集会的地点的时候,Bessie希望最大化方便的程度(也就是最小化不方便程度)。比如选择第X个农场作为集会地点,它的不方便程度是其它牛棚中每只奶牛去参加集会所走的路程之和,(比如,农场i到达农场X的距离是20,那么总路程就是C_i*20)。帮助Bessie找出最方便的地点来举行大集会。
输入格式:
Line 1: A single integer: N
Lines 2..N+1: Line i+1 contains a single integer: C_i
Lines N+2..2*N: Line i+N+1 contains three integers: A_i, B_i, and L_i
输出格式:
Line 1: The minimum inconvenience possible
输入样例#1:
5
1
1
0
0
2
1 3 1
2 3 2
3 4 3
4 5 3
输出样例#1:
15
题解
考虑如果依次枚举每一个点作为集会的地点
使用DFS进行计算
然后再依次比较
时间复杂度O(n^2)
但是n的范围太大,显然会超时。
那么,我们应当如何优化?
先看看样例
通过一次O(n)的计算,很容易得出来
如果选择1号节点,答案就是17
既然O(n^2)的计算无法在时间内求解
那么是否可以递推出来呢?
显然是可以的。
观察如果已经知道1号节点所需的时间
那么,我们可以做如下假设:
① 所有的牛首先到达了1号节点
② 3号节点以及他子树上的节点都需要退回1->3的路径的长度
③ 除了3号节点以及他子树上的节点都需要前进1->3的路径的长度
通过上面的三条东西,我们就可以从任意一个父节点推出子节点的时间
所以,又是一遍O(n)的计算就可以推出最终的答案
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
#define MAX 200100
#define ll long long
inline ll read()
{
register ll x=0,t=1;
register char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-'){t=-1;ch=getchar();}
while(ch<='9'&&ch>='0'){x=x*10+ch-48;ch=getchar();}
return x*t;
}
ll dis[MAX],C[MAX],Q[MAX],f[MAX],Sum,Ans=1000000000000000000;
struct Line
{
ll v,next,w;
}e[MAX];
ll h[MAX],cnt=1,N;
inline void Add(ll u,ll v,ll w)
{
e[cnt]=(Line){v,h[u],w};
h[u]=cnt++;
}
//使用两遍DFS
//第一遍以任意点为根节点计算一遍
//dis[i]表示以i为根的子树到根的距离之和
ll DFS(ll u,ll ff)
{
ll tot=0;
for(ll i=h[u];i;i=e[i].next)
{
ll v=e[i].v;
if(v!=ff)
{
ll s=DFS(v,u);//子树上牛的数量
dis[u]+=dis[v]+e[i].w*s;//统计
tot+=s;//牛的个数
}
}
return Q[u]=tot+C[u];
}
//第二遍计算偏移后的值
//先可以假设走到当前节点的父节点
//再让当前自己点所有牛退回来,父节点的所有牛走过去即可
void DFS2(ll u,ll ff)
{
for(ll i=h[u];i;i=e[i].next)
{
ll v=e[i].v;
if(v!=ff)
{
ll ss=e[i].w;
f[v]=f[u]-Q[v]*ss+(Sum-Q[v])*ss;
DFS2(v,u);
}
}
}
int main()
{
N=read();
for(ll i=1;i<=N;++i)
C[i]=read();
for(ll i=1;i<=N;++i)
Sum+=C[i];//统计牛的总数
for(ll i=1;i<N;++i)
{
ll u=read(),v=read(),w=read();
Add(u,v,w);
Add(v,u,w);
}
DFS(1,1);//求出以1为聚集处的结果
DFS2(1,1);//求出其他的偏移值
for(ll i=1;i<=N;++i)
Ans=min(Ans,f[i]);
cout<<Ans+dis[1]<<endl;
return 0;
}
【洛谷2986】【USACO10MAR】伟大的奶牛聚集的更多相关文章
- BZOJ 1827 洛谷 2986 [USACO10MAR]伟大的奶牛聚集Great Cow Gather
[题解] 很容易想到暴力做法,枚举每个点,然后对于每个点O(N)遍历整棵树计算答案.这样整个效率是O(N^2)的,显然不行. 我们考虑如果已知当前某个点的答案,如何快速计算它的儿子的答案. 显然选择它 ...
- 洛谷 P2986 [USACO10MAR]伟大的奶牛聚集Great Cow Gat…(树规)
题目描述 Bessie is planning the annual Great Cow Gathering for cows all across the country and, of cours ...
- 洛谷 P2986 [USACO10MAR]伟大的奶牛聚集(树形动规)
题目描述 Bessie is planning the annual Great Cow Gathering for cows all across the country and, of cours ...
- [洛谷P2986][USACO10MAR]伟大的奶牛聚集Great Cow Gat…
题目大意:给你一棵树,每个点有点权,边有边权,求一个点,使得其他所有点到这个点的距离和最短,输出这个距离 题解:树形$DP$,思路清晰,转移显然 卡点:无 C++ Code: #include < ...
- [USACO10MAR]伟大的奶牛聚集
[USACO10MAR]伟大的奶牛聚集 Bessie正在计划一年一度的奶牛大集会,来自全国各地的奶牛将来参加这一次集会.当然,她会选择最方便的地点来举办这次集会. 每个奶牛居住在 N(1<=N& ...
- 洛谷 P2986 [USACO10MAR]Great Cow Gat…(树形dp+容斥原理)
P2986 [USACO10MAR]伟大的奶牛聚集Great Cow Gat… 题目描述 Bessie is planning the annual Great Cow Gathering for c ...
- 洛谷 [USACO17OPEN]Bovine Genomics G奶牛基因组(金) ———— 1道骗人的二分+trie树(其实是差分算法)
题目 :Bovine Genomics G奶牛基因组 传送门: 洛谷P3667 题目描述 Farmer John owns NN cows with spots and NN cows without ...
- 【洛谷1345】 [USACO5.4]奶牛的电信(最小割)
传送门 洛谷 Solution emmm,直接对于每一个点拆点就好了. 然后边连Inf,点连1,跑最小割就是答案. 代码实现 #include<bits/stdc++.h> using n ...
- P2986 [USACO10MAR]伟大的奶牛聚集Great Cow Gat…
题目描述 Bessie is planning the annual Great Cow Gathering for cows all across the country and, of cours ...
随机推荐
- 反反爬虫 IP代理
0x01 前言 一般而言,抓取稍微正规一点的网站,都会有反爬虫的制约.反爬虫主要有以下几种方式: 通过UA判断.这是最低级的判断,一般反爬虫不会用这个做唯一判断,因为反反爬虫非常容易,直接随机UA即可 ...
- CentOS时间的查看与修改
[http://www.centoscn.com/CentOS/help/2014/0805/3430.html] 1.查看.修改Linux时区与时间 一.linux时区的查看与修改 1,查看当前时区 ...
- SSE图像算法优化系列十七:多个图像处理中常用函数的SSE实现。
在做图像处理的SSE优化时,也会经常遇到一些小的过程.数值优化等代码,本文分享一些个人收藏或实现的代码片段给大家. 一.快速求对数运算 对数运算在图像处理中也是个经常会遇到的过程,特备是在一些数据压缩 ...
- 速卖通AE平台+聚石塔+奇门 完整教程V2
公司是跨境电商,在阿里马马的速卖通平台上开有店铺,并且基于速卖通开放平台,自主研发了ERP系统,居今已有3年多的时间了,一直很稳定. 今年初,速卖通AE开放平台改版,并入淘宝开放平台中,我们的麻烦就开 ...
- LOJ6000 - 「网络流 24 题」搭配飞行员
原题链接 题意简述 求二分图的最大匹配. 题解 这里写的是匈牙利算法. 表示节点的当前匹配. 为真表示在这一轮匹配中,无法给节点一个新的匹配.所以如果为真就不用再dfs它了,直接continue就好. ...
- 企业内部DNS跨国配置案例
背景介绍:总公司与北京分公司均由总公司进行统一管理.总公司的主从DNS担任解析总公司服务器与北京分公司的服务器解析任务.总公司DNS委派其他两个公司管理自己域下的服务器解析任务.要求任何一个节点都能解 ...
- shell 脚本——判断条件
在之前的shell语言学习笔记中已经写过shell的几种判断语句及循环语句,也简单的介绍了shell语言判断语句和判断条件.在此再做进一步学习. test命令的测试功能 test命令用于检测系统文件及 ...
- HashMap并发导致死循环 CurrentHashMap
为何出现死循环简要说明 HashMap闭环的详细原因 cocurrentHashMap的底层机制 为何出现死循环简要说明 HashMap是非线程安全的,在并发场景中如果不保持足够的同步,就有可能在执行 ...
- php出现Can't use function return value in write context
<?php if(session('uid')){ }else{ } ?> 在用empty判断值为空的时候,报了这个Can't use function return value in w ...
- 【php】PHP环境整合
很久没装环境, 今天重新装了一次.遇到不少问题.记录下方便以后查看 修改apache的配置文件httpd.conf #apache 解析phpLoadFile "C:/phpeve/php5 ...