Say you have an array for which the ith element is the price of a given stock on day i.

Design an algorithm to find the maximum profit. You may complete at most two transactions.

Note: You may not engage in multiple transactions at the same time (i.e., you must sell the stock before you buy again).

Example 1:

Input: [3,3,5,0,0,3,1,4]
Output: 6
Explanation: Buy on day 4 (price = 0) and sell on day 6 (price = 3), profit = 3-0 = 3.
  Then buy on day 7 (price = 1) and sell on day 8 (price = 4), profit = 4-1 = 3.

Example 2:

Input: [1,2,3,4,5]
Output: 4
Explanation: Buy on day 1 (price = 1) and sell on day 5 (price = 5), profit = 5-1 = 4.
  Note that you cannot buy on day 1, buy on day 2 and sell them later, as you are
  engaging multiple transactions at the same time. You must sell before buying again.

Example 3:

Input: [7,6,4,3,1]
Output: 0
Explanation: In this case, no transaction is done, i.e. max profit = 0.

这道是买股票的最佳时间系列问题中最难最复杂的一道,前面两道 Best Time to Buy and Sell Stock 和 Best Time to Buy and Sell Stock II 的思路都非常的简洁明了,算法也很简单。而这道是要求最多交易两次,找到最大利润,还是需要用动态规划Dynamic Programming来解,而这里我们需要两个递推公式来分别更新两个变量local和global,参见网友Code Ganker的博客,我们其实可以求至少k次交易的最大利润,找到通解后可以设定 k = 2,即为本题的解答。我们定义local[i][j]为在到达第i天时最多可进行j次交易并且最后一次交易在最后一天卖出的最大利润,此为局部最优。然后我们定义global[i][j]为在到达第i天时最多可进行j次交易的最大利润,此为全局最优。它们的递推式为:

local[i][j] = max(global[i - 1][j - 1] + max(diff, 0), local[i - 1][j] + diff)

global[i][j] = max(local[i][j], global[i - 1][j])

其中局部最优值是比较前一天并少交易一次的全局最优加上大于0的差值,和前一天的局部最优加上差值中取较大值,而全局最优比较局部最优和前一天的全局最优,代码如下:

解法一:

class Solution {
public:
int maxProfit(vector<int> &prices) {
if (prices.empty()) return ;
int n = prices.size(), g[n][] = {}, l[n][] = {};
for (int i = ; i < prices.size(); ++i) {
int diff = prices[i] - prices[i - ];
for (int j = ; j <= ; ++j) {
l[i][j] = max(g[i - ][j - ] + max(diff, ), l[i - ][j] + diff);
g[i][j] = max(l[i][j], g[i - ][j]);
}
}
return g[n - ][];
}
};

下面这种解法用一维数组来代替二维数组,可以极大的节省了空间,由于覆盖的顺序关系,我们需要j从2到1,这样可以取到正确的g[j-1]值,而非已经被覆盖过的值,参见代码如下:

解法二:

class Solution {
public:
int maxProfit(vector<int> &prices) {
if (prices.empty()) return ;
int g[] = {};
int l[] = {};
for (int i = ; i < prices.size() - ; ++i) {
int diff = prices[i + ] - prices[i];
for (int j = ; j >= ; --j) {
l[j] = max(g[j - ] + max(diff, ), l[j] + diff);
g[j] = max(l[j], g[j]);
}
}
return g[];
}
};

我们如果假设prices数组为1, 3, 2, 9, 那么我们来看每次更新时local 和 global 的值:

第一天两次交易:      第一天一次交易:

local:    0 0 0       local:    0 0 0

global:  0 0 0       global:  0 0 0

第二天两次交易:      第二天一次交易:

local:    0 0 2       local:    0 2 2

global:  0 0 2       global:  0 2 2

第三天两次交易:      第三天一次交易:

local:    0 2 2       local:    0 1 2

global:  0 2 2       global:  0 2 2

第四天两次交易:      第四天一次交易:

local:    0 1 9       local:    0 8 9

global:  0 2 9       global:  0 8 9

在网友@loveahnee的提醒下,发现了其实上述的递推公式关于local[i][j]的可以稍稍化简一下,我们之前定义的local[i][j]为在到达第i天时最多可进行j次交易并且最后一次交易在最后一天卖出的最大利润,然后网友@fgvlty解释了一下第 i 天卖第 j 支股票的话,一定是下面的一种:

1. 今天刚买的
那么 Local(i, j) = Global(i-1, j-1)
相当于啥都没干

2. 昨天买的
那么 Local(i, j) = Global(i-1, j-1) + diff
等于Global(i-1, j-1) 中的交易,加上今天干的那一票

3. 更早之前买的
那么 Local(i, j) = Local(i-1, j) + diff
昨天别卖了,留到今天卖

但其实第一种情况是不需要考虑的,因为当天买当天卖不会增加利润,完全是重复操作,这种情况可以归纳在global[i-1][j-1]中,所以我们就不需要max(0, diff)了,那么由于两项都加上了diff,所以我们可以把diff抽到max的外面,所以更新后的递推公式为:

local[i][j] = max(global[i - 1][j - 1], local[i - 1][j]) + diff

global[i][j] = max(local[i][j], global[i - 1][j])

类似题目:

Best Time to Buy and Sell Stock with Cooldown

Best Time to Buy and Sell Stock IV

Best Time to Buy and Sell Stock II

Best Time to Buy and Sell Stock

参考资料:

https://leetcode.com/problems/best-time-to-buy-and-sell-stock-iii/

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] Best Time to Buy and Sell Stock III 买股票的最佳时间之三的更多相关文章

  1. [LeetCode] Best Time to Buy and Sell Stock II 买股票的最佳时间之二

    Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...

  2. [LeetCode] Best Time to Buy and Sell Stock 买卖股票的最佳时间

    Say you have an array for which the ith element is the price of a given stock on day i. If you were ...

  3. [LintCode] Best Time to Buy and Sell Stock II 买股票的最佳时间之二

    Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...

  4. [LeetCode] 121. Best Time to Buy and Sell Stock 买卖股票的最佳时间

    Say you have an array for which the ith element is the price of a given stock on day i. If you were ...

  5. LeetCode: Best Time to Buy and Sell Stock III 解题报告

    Best Time to Buy and Sell Stock IIIQuestion SolutionSay you have an array for which the ith element ...

  6. [LeetCode] Best Time to Buy and Sell Stock III

    将Best Time to Buy and Sell Stock的如下思路用到此题目 思路1:第i天买入,能赚到的最大利润是多少呢?就是i + 1 ~ n天中最大的股价减去第i天的. 思路2:第i天买 ...

  7. LeetCode: Best Time to Buy and Sell Stock III [123]

    [称号] Say you have an array for which the ith element is the price of a given stock on day i. Design ...

  8. [Leetcode] Best time to buy and sell stock iii 买卖股票的最佳时机

    Say you have an array for which the i th element is the price of a given stock on day i. Design an a ...

  9. [LintCode] Best Time to Buy and Sell Stock 买卖股票的最佳时间

    Say you have an array for which the ith element is the price of a given stock on day i. If you were ...

随机推荐

  1. iOS 编辑UITableView(根据iOS编程编写)

    上个项目我们完成了 JXHomepwner 简单的应用展示,项目地址.本节我们需要在上节项目基础上,增加一些响应用户操作.包括添加,删除和移动表格. 编辑模式 UITableView 有一个名为  e ...

  2. 在线课程笔记—.NET基础

    关于学习北京理工大学金旭亮老师在线课程的笔记. 介绍: 在线课程网址:http://mooc.study.163.com/university/BIT#/c 老师个人网站:http://jinxuli ...

  3. JDBC_part1_Oracle数据库连接JDBC以及查询语句

    本文为博主辛苦总结,希望自己以后返回来看的时候理解更深刻,也希望可以起到帮助初学者的作用. 转载请注明 出自 : luogg的博客园 谢谢配合! JDBC part1 JDBC概述 jdbc是一种用于 ...

  4. Css3新特性应用之视觉效果

    一.单侧阴影 box-shadow属性的应用,格式:h-shadow v-shadow blur spread color inset属性取值介绍 h-sahdow:水平阴影的位置,允许负值 v-sh ...

  5. querySelectorAll 方法相比 getElementsBy 系列方法区别

    最近有人问到querySelectorAll 方法相比 getElementsBy 系列方法区别,一时没想起来说些什么,今天查下文档,总结一下它们的区别,以便自己理解. 1. W3C 标准queryS ...

  6. IIS服务器和xampp中的appche服务器端口冲突解决办法

    今天在启动xampp中的appche的时候,发现以前能起来的现在起不来了.想到可能是最近配置的系统自带的IIS服务器把appche的端口给占用了. (appche和iis的默认端口号都是:80:) 问 ...

  7. commit(), commitNow()和commitAllowingStateLoss()

    关于FragmentTransaction的各种提交方法: commit(),commitAllowingStateLoss(),commitNow()和commitNowAllowingStateL ...

  8. Android HandlerThread 总结使用

    转载请标明出处:http://www.cnblogs.com/zhaoyanjun/p/6062880.html 本文出自[赵彦军的博客] 前言 以前我在 [Android Handler.Loop ...

  9. 一步步学习 Spring Data 系列之JPA(一)

    引入: Spring Data是SpringSource基金会下的一个用于简化数据库访问,并支持云服务的开源框架.其主要目标是使得数据库的访问变得方便快捷,并支持map-reduce框架和云计算数据服 ...

  10. 关于用sql语句实现一串数字位数不足在左侧补0的技巧

    在日常使用sql做查询插入操作时,我们通常会用到用sql查询一串编号,这串编号由数字组成.为了统一美观,我们记录编号时,统一指定位数,不足的位数我们在其左侧补0.如编号66,我们指定位数为5,则保存数 ...