[LeetCode] Best Time to Buy and Sell Stock III 买股票的最佳时间之三
Say you have an array for which the ith element is the price of a given stock on day i.
Design an algorithm to find the maximum profit. You may complete at most two transactions.
Note: You may not engage in multiple transactions at the same time (i.e., you must sell the stock before you buy again).
Example 1:
Input: [3,3,5,0,0,3,1,4]
Output: 6
Explanation: Buy on day 4 (price = 0) and sell on day 6 (price = 3), profit = 3-0 = 3.
Then buy on day 7 (price = 1) and sell on day 8 (price = 4), profit = 4-1 = 3.
Example 2:
Input: [1,2,3,4,5]
Output: 4
Explanation: Buy on day 1 (price = 1) and sell on day 5 (price = 5), profit = 5-1 = 4.
Note that you cannot buy on day 1, buy on day 2 and sell them later, as you are
engaging multiple transactions at the same time. You must sell before buying again.
Example 3:
Input: [7,6,4,3,1]
Output: 0
Explanation: In this case, no transaction is done, i.e. max profit = 0.
这道是买股票的最佳时间系列问题中最难最复杂的一道,前面两道 Best Time to Buy and Sell Stock 和 Best Time to Buy and Sell Stock II 的思路都非常的简洁明了,算法也很简单。而这道是要求最多交易两次,找到最大利润,还是需要用动态规划Dynamic Programming来解,而这里我们需要两个递推公式来分别更新两个变量local和global,参见网友Code Ganker的博客,我们其实可以求至少k次交易的最大利润,找到通解后可以设定 k = 2,即为本题的解答。我们定义local[i][j]为在到达第i天时最多可进行j次交易并且最后一次交易在最后一天卖出的最大利润,此为局部最优。然后我们定义global[i][j]为在到达第i天时最多可进行j次交易的最大利润,此为全局最优。它们的递推式为:
local[i][j] = max(global[i - 1][j - 1] + max(diff, 0), local[i - 1][j] + diff)
global[i][j] = max(local[i][j], global[i - 1][j])
其中局部最优值是比较前一天并少交易一次的全局最优加上大于0的差值,和前一天的局部最优加上差值中取较大值,而全局最优比较局部最优和前一天的全局最优,代码如下:
解法一:
class Solution {
public:
int maxProfit(vector<int> &prices) {
if (prices.empty()) return ;
int n = prices.size(), g[n][] = {}, l[n][] = {};
for (int i = ; i < prices.size(); ++i) {
int diff = prices[i] - prices[i - ];
for (int j = ; j <= ; ++j) {
l[i][j] = max(g[i - ][j - ] + max(diff, ), l[i - ][j] + diff);
g[i][j] = max(l[i][j], g[i - ][j]);
}
}
return g[n - ][];
}
};
下面这种解法用一维数组来代替二维数组,可以极大的节省了空间,由于覆盖的顺序关系,我们需要j从2到1,这样可以取到正确的g[j-1]值,而非已经被覆盖过的值,参见代码如下:
解法二:
class Solution {
public:
int maxProfit(vector<int> &prices) {
if (prices.empty()) return ;
int g[] = {};
int l[] = {};
for (int i = ; i < prices.size() - ; ++i) {
int diff = prices[i + ] - prices[i];
for (int j = ; j >= ; --j) {
l[j] = max(g[j - ] + max(diff, ), l[j] + diff);
g[j] = max(l[j], g[j]);
}
}
return g[];
}
};
我们如果假设prices数组为1, 3, 2, 9, 那么我们来看每次更新时local 和 global 的值:
第一天两次交易: 第一天一次交易:
local: 0 0 0 local: 0 0 0
global: 0 0 0 global: 0 0 0
第二天两次交易: 第二天一次交易:
local: 0 0 2 local: 0 2 2
global: 0 0 2 global: 0 2 2
第三天两次交易: 第三天一次交易:
local: 0 2 2 local: 0 1 2
global: 0 2 2 global: 0 2 2
第四天两次交易: 第四天一次交易:
local: 0 1 9 local: 0 8 9
global: 0 2 9 global: 0 8 9
在网友@loveahnee的提醒下,发现了其实上述的递推公式关于local[i][j]的可以稍稍化简一下,我们之前定义的local[i][j]为在到达第i天时最多可进行j次交易并且最后一次交易在最后一天卖出的最大利润,然后网友@fgvlty解释了一下第 i 天卖第 j 支股票的话,一定是下面的一种:
1. 今天刚买的
那么 Local(i, j) = Global(i-1, j-1)
相当于啥都没干
2. 昨天买的
那么 Local(i, j) = Global(i-1, j-1) + diff
等于Global(i-1, j-1) 中的交易,加上今天干的那一票
3. 更早之前买的
那么 Local(i, j) = Local(i-1, j) + diff
昨天别卖了,留到今天卖
但其实第一种情况是不需要考虑的,因为当天买当天卖不会增加利润,完全是重复操作,这种情况可以归纳在global[i-1][j-1]中,所以我们就不需要max(0, diff)了,那么由于两项都加上了diff,所以我们可以把diff抽到max的外面,所以更新后的递推公式为:
local[i][j] = max(global[i - 1][j - 1], local[i - 1][j]) + diff
global[i][j] = max(local[i][j], global[i - 1][j])
类似题目:
Best Time to Buy and Sell Stock with Cooldown
Best Time to Buy and Sell Stock IV
Best Time to Buy and Sell Stock II
Best Time to Buy and Sell Stock
参考资料:
https://leetcode.com/problems/best-time-to-buy-and-sell-stock-iii/
LeetCode All in One 题目讲解汇总(持续更新中...)
[LeetCode] Best Time to Buy and Sell Stock III 买股票的最佳时间之三的更多相关文章
- [LeetCode] Best Time to Buy and Sell Stock II 买股票的最佳时间之二
Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...
- [LeetCode] Best Time to Buy and Sell Stock 买卖股票的最佳时间
Say you have an array for which the ith element is the price of a given stock on day i. If you were ...
- [LintCode] Best Time to Buy and Sell Stock II 买股票的最佳时间之二
Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...
- [LeetCode] 121. Best Time to Buy and Sell Stock 买卖股票的最佳时间
Say you have an array for which the ith element is the price of a given stock on day i. If you were ...
- LeetCode: Best Time to Buy and Sell Stock III 解题报告
Best Time to Buy and Sell Stock IIIQuestion SolutionSay you have an array for which the ith element ...
- [LeetCode] Best Time to Buy and Sell Stock III
将Best Time to Buy and Sell Stock的如下思路用到此题目 思路1:第i天买入,能赚到的最大利润是多少呢?就是i + 1 ~ n天中最大的股价减去第i天的. 思路2:第i天买 ...
- LeetCode: Best Time to Buy and Sell Stock III [123]
[称号] Say you have an array for which the ith element is the price of a given stock on day i. Design ...
- [Leetcode] Best time to buy and sell stock iii 买卖股票的最佳时机
Say you have an array for which the i th element is the price of a given stock on day i. Design an a ...
- [LintCode] Best Time to Buy and Sell Stock 买卖股票的最佳时间
Say you have an array for which the ith element is the price of a given stock on day i. If you were ...
随机推荐
- JAVA/GUI程序之记事本
自上半年JAVA课程结束后,再也没有看过JAVA了,最近不是很忙,又简单的看了看,本博客纯属记录学习过程,请大神们别笑,其中错误是难免的,毕竟是新手写的博客.下面就进入我们的正题吧,复习GUI时,就想 ...
- 怎样写一个webpack loader
div{display:table-cell;vertical-align:middle}#crayon-theme-info .content *{float:left}#crayon-theme- ...
- C#得到某月最后一天晚上23:59:59和某月第一天00:00:00
项目需求: 某学校订单截止操作时间的上一个月最后一天晚上23:59:59 为止所有支付的订单统计: 代码: /// <summary> /// 通过学校和截止时间得到订单 /// < ...
- C#解决界面不响应
在我们的程序中,经常会有一些耗时较长的运算,为了保证用户体验,不引起界面不响应,我们一般会采用多线程操作,让耗时操作在后台完成,完成后再进行处理或给出提示,在运行中,也会时时去刷新界面上的进度条等显示 ...
- ASP.NET Core Kestrel部署HTTPS
ASP.NET Core配置 Kestrel部署HTTPS.现在大部分网站已经部署HTTPS,大家对于安全越来越重视. 今天简单介绍一下ASP.NET Core 部署HTTPS,直接通过配置Kestr ...
- Python (一) 简介、安装
一.简介 Python:是著名的"龟叔"Guido van Rossum在1989年圣诞节期间,为了打发无聊的圣诞节而编写的一个编程语言. 那么Python 究竟是来做什么的? 首 ...
- 浅析java内存模型--JMM(Java Memory Model)
在并发编程中,多个线程之间采取什么机制进行通信(信息交换),什么机制进行数据的同步? 在Java语言中,采用的是共享内存模型来实现多线程之间的信息交换和数据同步的. 线程之间通过共享程序公共的状态,通 ...
- MyEclipse 2016正式版更新内容
MyEclipse 2016 Stable 1.0正式发布!在保留之前CI系列的工具之外,又新增了许多非常棒的新功能.正式版下载地址 Eclipse Mars MyEclipse 2016基于Ecli ...
- iOS字体加载三种方式
静态加载 动态加载 动态下载苹果提供的多种字体 其他 打印出当前所有可用的字体 检查某字体是否已经下载 这是一篇很简短的文章,介绍了 iOS 自定义字体加载的三种方式. 静态加载 这个可以说是最简单最 ...
- Java 性能分析工具 , 第 2 部分:Java 内置监控工具
引言 本文为 Java 性能分析工具系列文章第二篇,第一篇:操作系统工具.在本文中将介绍如何使用 Java 内置监控工具更加深入的了解 Java 应用程序和 JVM 本身.在 JDK 中有许多内置的工 ...