Say you have an array for which the ith element is the price of a given stock on day i.

Design an algorithm to find the maximum profit. You may complete at most two transactions.

Note: You may not engage in multiple transactions at the same time (i.e., you must sell the stock before you buy again).

Example 1:

Input: [3,3,5,0,0,3,1,4]
Output: 6
Explanation: Buy on day 4 (price = 0) and sell on day 6 (price = 3), profit = 3-0 = 3.
  Then buy on day 7 (price = 1) and sell on day 8 (price = 4), profit = 4-1 = 3.

Example 2:

Input: [1,2,3,4,5]
Output: 4
Explanation: Buy on day 1 (price = 1) and sell on day 5 (price = 5), profit = 5-1 = 4.
  Note that you cannot buy on day 1, buy on day 2 and sell them later, as you are
  engaging multiple transactions at the same time. You must sell before buying again.

Example 3:

Input: [7,6,4,3,1]
Output: 0
Explanation: In this case, no transaction is done, i.e. max profit = 0.

这道是买股票的最佳时间系列问题中最难最复杂的一道,前面两道 Best Time to Buy and Sell Stock 和 Best Time to Buy and Sell Stock II 的思路都非常的简洁明了,算法也很简单。而这道是要求最多交易两次,找到最大利润,还是需要用动态规划Dynamic Programming来解,而这里我们需要两个递推公式来分别更新两个变量local和global,参见网友Code Ganker的博客,我们其实可以求至少k次交易的最大利润,找到通解后可以设定 k = 2,即为本题的解答。我们定义local[i][j]为在到达第i天时最多可进行j次交易并且最后一次交易在最后一天卖出的最大利润,此为局部最优。然后我们定义global[i][j]为在到达第i天时最多可进行j次交易的最大利润,此为全局最优。它们的递推式为:

local[i][j] = max(global[i - 1][j - 1] + max(diff, 0), local[i - 1][j] + diff)

global[i][j] = max(local[i][j], global[i - 1][j])

其中局部最优值是比较前一天并少交易一次的全局最优加上大于0的差值,和前一天的局部最优加上差值中取较大值,而全局最优比较局部最优和前一天的全局最优,代码如下:

解法一:

class Solution {
public:
int maxProfit(vector<int> &prices) {
if (prices.empty()) return ;
int n = prices.size(), g[n][] = {}, l[n][] = {};
for (int i = ; i < prices.size(); ++i) {
int diff = prices[i] - prices[i - ];
for (int j = ; j <= ; ++j) {
l[i][j] = max(g[i - ][j - ] + max(diff, ), l[i - ][j] + diff);
g[i][j] = max(l[i][j], g[i - ][j]);
}
}
return g[n - ][];
}
};

下面这种解法用一维数组来代替二维数组,可以极大的节省了空间,由于覆盖的顺序关系,我们需要j从2到1,这样可以取到正确的g[j-1]值,而非已经被覆盖过的值,参见代码如下:

解法二:

class Solution {
public:
int maxProfit(vector<int> &prices) {
if (prices.empty()) return ;
int g[] = {};
int l[] = {};
for (int i = ; i < prices.size() - ; ++i) {
int diff = prices[i + ] - prices[i];
for (int j = ; j >= ; --j) {
l[j] = max(g[j - ] + max(diff, ), l[j] + diff);
g[j] = max(l[j], g[j]);
}
}
return g[];
}
};

我们如果假设prices数组为1, 3, 2, 9, 那么我们来看每次更新时local 和 global 的值:

第一天两次交易:      第一天一次交易:

local:    0 0 0       local:    0 0 0

global:  0 0 0       global:  0 0 0

第二天两次交易:      第二天一次交易:

local:    0 0 2       local:    0 2 2

global:  0 0 2       global:  0 2 2

第三天两次交易:      第三天一次交易:

local:    0 2 2       local:    0 1 2

global:  0 2 2       global:  0 2 2

第四天两次交易:      第四天一次交易:

local:    0 1 9       local:    0 8 9

global:  0 2 9       global:  0 8 9

在网友@loveahnee的提醒下,发现了其实上述的递推公式关于local[i][j]的可以稍稍化简一下,我们之前定义的local[i][j]为在到达第i天时最多可进行j次交易并且最后一次交易在最后一天卖出的最大利润,然后网友@fgvlty解释了一下第 i 天卖第 j 支股票的话,一定是下面的一种:

1. 今天刚买的
那么 Local(i, j) = Global(i-1, j-1)
相当于啥都没干

2. 昨天买的
那么 Local(i, j) = Global(i-1, j-1) + diff
等于Global(i-1, j-1) 中的交易,加上今天干的那一票

3. 更早之前买的
那么 Local(i, j) = Local(i-1, j) + diff
昨天别卖了,留到今天卖

但其实第一种情况是不需要考虑的,因为当天买当天卖不会增加利润,完全是重复操作,这种情况可以归纳在global[i-1][j-1]中,所以我们就不需要max(0, diff)了,那么由于两项都加上了diff,所以我们可以把diff抽到max的外面,所以更新后的递推公式为:

local[i][j] = max(global[i - 1][j - 1], local[i - 1][j]) + diff

global[i][j] = max(local[i][j], global[i - 1][j])

类似题目:

Best Time to Buy and Sell Stock with Cooldown

Best Time to Buy and Sell Stock IV

Best Time to Buy and Sell Stock II

Best Time to Buy and Sell Stock

参考资料:

https://leetcode.com/problems/best-time-to-buy-and-sell-stock-iii/

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] Best Time to Buy and Sell Stock III 买股票的最佳时间之三的更多相关文章

  1. [LeetCode] Best Time to Buy and Sell Stock II 买股票的最佳时间之二

    Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...

  2. [LeetCode] Best Time to Buy and Sell Stock 买卖股票的最佳时间

    Say you have an array for which the ith element is the price of a given stock on day i. If you were ...

  3. [LintCode] Best Time to Buy and Sell Stock II 买股票的最佳时间之二

    Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...

  4. [LeetCode] 121. Best Time to Buy and Sell Stock 买卖股票的最佳时间

    Say you have an array for which the ith element is the price of a given stock on day i. If you were ...

  5. LeetCode: Best Time to Buy and Sell Stock III 解题报告

    Best Time to Buy and Sell Stock IIIQuestion SolutionSay you have an array for which the ith element ...

  6. [LeetCode] Best Time to Buy and Sell Stock III

    将Best Time to Buy and Sell Stock的如下思路用到此题目 思路1:第i天买入,能赚到的最大利润是多少呢?就是i + 1 ~ n天中最大的股价减去第i天的. 思路2:第i天买 ...

  7. LeetCode: Best Time to Buy and Sell Stock III [123]

    [称号] Say you have an array for which the ith element is the price of a given stock on day i. Design ...

  8. [Leetcode] Best time to buy and sell stock iii 买卖股票的最佳时机

    Say you have an array for which the i th element is the price of a given stock on day i. Design an a ...

  9. [LintCode] Best Time to Buy and Sell Stock 买卖股票的最佳时间

    Say you have an array for which the ith element is the price of a given stock on day i. If you were ...

随机推荐

  1. 在idea中maven项目jdk编译version总是跳到1.5

    bug描述 项目ide: idea 项目构建工具:maven bug现象:每次修改pom之后,idea自动扫描一遍,然后发现默认的compile级别跳到5.0. 每次手动去setting里修改comp ...

  2. C#开发微信门户及应用(28)--微信“摇一摇·周边”功能的使用和接口的实现

    ”摇一摇周边“是微信提供的一种新的基于位置的连接方式.用户通过“摇一摇”的“周边”页卡,可以与线下商户进行互动,获得商户提供的个性化的服务.微信4月份有一个赠送摇一摇设备的活动,我们有幸获得赠送资格, ...

  3. mysql数据库乱码的问题解决

    排查原因:打断点,查看到底是在执行存数据库操作之前就已经乱码了,还是存数据库操作后乱码的. 1.前者解决方案: 在web.xml里面加上: <filter> <filter-name ...

  4. BestCoder Round #89 B题---Fxx and game(单调队列)

    题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=5945     问题描述 输入描述 输出描述 输入样例 输出样例 题意:中文题,不再赘述: 思路:  B ...

  5. spider RPC框架的需求来源与特性介绍(一)

    spider RPC 特性介绍 spider RPC 性能测试 spider RPC 入门指南 spider RPC 配置文件参考 spider RPC 开发指南 spider RPC 安全性 spi ...

  6. 设计模式03备忘录(java)

    先贴代码有空来写内容. 备忘录1 //简单的备忘录,只可以记录上一次修改前的状态,实现撤回一次的操作. class Student{ private String name; private Stri ...

  7. Waud.js – 使用HTML5降级处理的Web音频库

    Waud.js 是一个Web音频库,有一个HTML5音频降级处理方案. 它允许您利用Web音频API为你的Web应用程序控制音频功能.在不支持Web音频API的非现代浏览器使用HTML5音频降级方案. ...

  8. iOS之获取经纬度并通过反向地理编码获取详细地址

    _locationManager = [[CLLocationManager alloc] init]; //期望的经度 _locationManager.desiredAccuracy = kCLL ...

  9. Android 5.X新特性之为RecyclerView添加HeaderView和FooterView

    上一节我们讲到了 Android 5.X新特性之RecyclerView基本解析及无限复用 相信大家也应该熟悉了RecyclerView的基本使用,这一节我们来学习下,为RecyclerView添加H ...

  10. 初识java之String与StringBuffer(上)

    好久没写博客了,一直在纠结后面的路怎么发展?好了不说废话了!!正题开始!! String与StringBuffer类是我们在开发中最常用的,我们现在一起来分析一下这两个类,首先我们先来谈谈String ...