参考:《机器学习实战》- Machine Learning in Action

一、 必备的包

一般而言,这几个包是比较常见的:

• matplotlib,用于绘图

• numpy,数组处理库

• pandas,强大的数据分析库

• sklearn,用于线性回归的库

• scipy, 提供很多有用的科学函数

我一般是用pip安装,若不熟悉这些库,可以搜索一下它们的简单教程。

二、 线性回归

为了尽量简单,所以用以下一元方程式为例子:

典型的例子是房价预测,假设我们有以下数据集:

我们需要通过训练这些数据得到一个线性模型,以便来预测大小为700平方英尺的房价是多少。

详细代码如下:

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from sklearn import datasets, linear_model def get_data(file_name):
data = pd.read_csv(file_name)
X_parameter = []
Y_parameter = []
for single_square_feet ,single_price_value in zip(data['square_feet'],data['price']):
X_parameter.append([float(single_square_feet)])
Y_parameter.append(float(single_price_value))
return X_parameter,Y_parameter def linear_model_main(X_parameters,Y_parameters,predict_value):
regr = linear_model.LinearRegression()
regr.fit(X_parameters, Y_parameters)
predict_outcome = regr.predict(predict_value)
predictions = {}
predictions['intercept'] = regr.intercept_
predictions['coefficient'] = regr.coef_
predictions['predicted_value'] = predict_outcome return predictions def show_linear_line(X_parameters,Y_parameters):
regr = linear_model.LinearRegression()
regr.fit(X_parameters, Y_parameters)
plt.scatter(X_parameters,Y_parameters,color='blue')
plt.plot(X_parameters,regr.predict(X_parameters),color='red',linewidth=4)
#plt.xticks(())
#plt.yticks(())
plt.show() if __name__ == "__main__": X,Y = get_data('E:/machine_learning/LR/input_data.csv')
#show_linear_line(X,Y)
predictvalue = 700
result = linear_model_main(X,Y,predictvalue)
print "Intercept value " , result['intercept']
print "coefficient" , result['coefficient']
print "Predicted value: ",result['predicted_value']

结果如图:

  

前两个为公式里的参数。

三、 多项式回归

简单的线性模型误差难免高,于是引入多项式回归模型,方程式如下:

这次我们用scipy.stats中的norm来生成满足高斯分布的数据,直接贴代码:

# encoding:utf-8
import matplotlib.pyplot as plt
import numpy as np
from scipy.stats import norm
from sklearn.pipeline import Pipeline
from sklearn.linear_model import LinearRegression, SGDClassifier
from sklearn.preprocessing import PolynomialFeatures, StandardScaler x = np.arange(0, 1, 0.002)
y = norm.rvs(0, size=500, scale=0.1) #高斯分布数据
y = y + x**2 plt.scatter(x, y, s=5)
y_test = []
y_test = np.array(y_test) #clf = LinearRegression(fit_intercept=False)
clf = Pipeline([('poly', PolynomialFeatures(degree=100)),
('linear', LinearRegression(fit_intercept=False))])
clf.fit(x[:, np.newaxis], y)
y_test = clf.predict(x[:, np.newaxis]) plt.plot(x, y_test, linewidth=2)
plt.grid() #显示网格
plt.show()

结果如下:

这里取的最高次为100

参考博客:http://python.jobbole.com/81215/

python实现线性回归的更多相关文章

  1. 机器学习经典算法具体解释及Python实现--线性回归(Linear Regression)算法

    (一)认识回归 回归是统计学中最有力的工具之中的一个. 机器学习监督学习算法分为分类算法和回归算法两种,事实上就是依据类别标签分布类型为离散型.连续性而定义的. 顾名思义.分类算法用于离散型分布预測, ...

  2. python求线性回归斜率

    一. 先说我对这个题目的理解 直线的x,y方程是这样的:y = kx+b, k就是斜率. 求线性回归斜率, 就是说 有这么一组(x, y)的对应值——样本.如果有四组,就说样本量是4.根据这些样本,做 ...

  3. 吴裕雄 python 机器学习——线性回归模型

    import numpy as np from sklearn import datasets,linear_model from sklearn.model_selection import tra ...

  4. python模拟线性回归的点

    构造符合线性回归的数据点 import numpy as np import tensorflow as tf import matplotlib.pyplot as plt # 随机生成1000个点 ...

  5. python机器学习---线性回归案例和KNN机器学习案例

    散点图和KNN预测 一丶案例引入 # 城市气候与海洋的关系研究 # 导包 import numpy as np import pandas as pd from pandas import Serie ...

  6. python实现线性回归之简单回归

    代码来源:https://github.com/eriklindernoren/ML-From-Scratch 首先定义一个基本的回归类,作为各种回归方法的基类: class Regression(o ...

  7. Python机器学习/LinearRegression(线性回归模型)(附源码)

    LinearRegression(线性回归) 2019-02-20  20:25:47 1.线性回归简介 线性回归定义: 百科中解释 我个人的理解就是:线性回归算法就是一个使用线性函数作为模型框架($ ...

  8. 机器学习之线性回归(纯python实现)][转]

    本文转载自:https://juejin.im/post/5a924df16fb9a0634514d6e1 机器学习之线性回归(纯python实现) 线性回归是机器学习中最基本的一个算法,大部分算法都 ...

  9. 【机器学习】线性回归python实现

    线性回归原理介绍 线性回归python实现 线性回归sklearn实现 这里使用python实现线性回归,没有使用sklearn等机器学习框架,目的是帮助理解算法的原理. 写了三个例子,分别是单变量的 ...

随机推荐

  1. Aspose.Words for .NET

    Aspose.Words for .NET Aspose.Words for .NET是 .NET 下先进的 Word 文档处理 API.它支持 DOC, OOXML, RTF, HTML, Open ...

  2. Python 环境的搭建

    Python最新源码,二进制文档,新闻资讯等可以在Python的官网查看到: Python官网:http://www.python.org/ 你可以在以下链接中下载 Python 的文档,你可以下载 ...

  3. java实现中文分词

    IK Analyzer是基于lucene实现的分词开源框架 下载路径:http://so.csdn.net/so/search/s.do?q=IKAnalyzer2012.jar&t=doc& ...

  4. 【Luogu1291】百事世界杯之旅(动态规划,数学期望)

    [Luogu1291]百事世界杯之旅(动态规划,数学期望) 题面 洛谷 题解 设\(f[i]\)表示已经集齐了\(i\)个名字的期望 现在有两种方法: 先说我自己的: \[f[i]=f[i-1]+1+ ...

  5. 【BZOJ2337】Xor和路径(高斯消元)

    [BZOJ2337]Xor和路径(高斯消元) 题面 BZOJ 题解 我应该多学点套路: 对于xor之类的位运算,要想到每一位拆开算贡献 所以,对于每一位拆开来看 好了,既然是按位来算 我们就只需要计算 ...

  6. 分享一下我进入IT行业的经历

    今天突然根想写博客,就注册了一个,分享一下我的成长经历. 我第一次接触编程的时候是在上大学的时候,我学的专业是工程测量接触的第一个语言是vb,我记得很清楚,我当时写出第一个小Demo是的心情,感觉到了 ...

  7. 设置mysql密码 Access denied 问题

    原文:http://www.upwqy.com/details/31.html 在Mac上安装完mysql以后 在终端执行 /usr/local/mysql/bin/mysql 可以直接进入.但是在设 ...

  8. MVC4不支持EF6解决方案 && Nuget控制台操作说明

    问题背景:MVC4不支持EF6,所以要把EF6卸载然后安装EF5.只能降低版本EF5+MVC4或者EF6+MVC5; 这时候: Uninstall-Package EntityFramework -F ...

  9. webpack学习(六)打包压缩js和css

    打包压缩js与css 由于webpack本身集成了UglifyJS插件(webpack.optimize.UglifyJsPlugin)来完成对JS与CSS的压缩混淆,无需引用额外的插件, 其命令we ...

  10. celery学习之入门

    Celery 简介 Celery 是一个简单.灵活且可靠的,处理大量消息的分布式系统,并且提供维护这样一个系统的必需工具.它是一个专注于实时处理的任务队列,同时也支持任务调度. broker:一个消息 ...