python实现一般最小二乘系统辨识方法
问题:
对于一个未知参数的系统,往往需要用到系统辨识的方法,例如对于一个单输入单输出系统:
Z(k)+a1*Z(k-1)+a2*Z(k-2)=b1*U(k-1)+b2*U(k-2)+V(k)
其中:V(k)=c1*v(k)+c2*v(k-1)+c3*v(k-3)
输入信号采用四阶幅值为1的M序列,高斯噪声v(k)均值为0,方差为0.1。
假设真值为a1=1.6,a2=0.7,b1=1.0,b2=0.4,c1=1.0,c2=1.6,c3=0.7。需要对以上参数进行辨识。
方法:
一般最小二乘法是系统辨识中最简单的辨识方法之一,其MATLAB实现方法十分简单,我发现网上一大把,所以我决定“翻译”一个python版的一般最小二乘辨识方法供读者参考。
本文用到的库:
import numpy as np
import matplotlib.pyplot as plt
from operator import xor
from numpy.linalg import inv
M序列的产生:
在python中,M序列的产生方法与matlab类似,先产生随机数,然后采用四阶移位寄存器滤波变换,得到我们想要的M序列。
#M序列产生
L=16
#设置M序列周期
#定义初始值
y=np.zeros(L)
u=np.zeros(L)
y1=1
y2=1
y3=1
y4=0
for i in range(0,L):
x1=xor(y3,y4)
x2=y1
x3=y2
x4=y3
y[i]=y4
if y[i]>0.5:
u[i]=-1
else:
u[i]=1
y1=x1
y2=x2
y3=x3
y4=x4
plt.figure(num=2)
x=np.linspace(0,15,16)
plt.bar(x,u,width=0.1)
plt.title('输入信号M序列')
高斯分布噪声:
这里采用的是random库中的函数,可以看到,我们设置的均值为0,方差为0.1。
#产生一组16个N(0,1)的高斯分布的随机噪声
mu=0
sigma=0.1
samplenum=16
n=np.random.normal(mu,sigma,samplenum)
plt.figure(num=1)
plt.plot(n)
plt.title("高斯分布随机噪声")
最小二乘辨识程序:
#最小二乘辨识过程
z=np.zeros(16) for k in range(2,15):
z[k]=-1.6*z[k-1]-0.7*z[k-2]+1.0*u[k-1]+0.4*u[k-2]+1.0*n[k]+1.6*n[k-1]+0.7*n[k-2] plt.figure(num=3)
plt.bar(x,z,width=0.1)
plt.title('输出观测值') H=np.array([[-z[1],-z[0],u[1],u[0]],[-z[2],-z[1],u[2],u[1]],[-z[3],-z[2],u[3],u[2]],[-z[4],-z[3],u[4],u[3]],[-z[5],-z[4],u[5],u[4]],[-z[6],-z[5],u[6],u[5]],[-z[7],-z[6],u[7],u[6]],[-z[8],-z[7],u[8],u[7]],[-z[9],-z[8],u[9],u[8]],[-z[10],-z[9],u[10],u[9]],[-z[11],-z[10],u[11],u[10]],[-z[12],-z[11],u[12],u[11]],[-z[13],-z[12],u[13],u[12]],[-z[14],-z[13],u[14],u[13]]])
Z=np.array([z[2],z[3],z[4],z[5],z[6],z[7],z[8],z[9],z[10],z[11],z[12],z[13],z[14],z[15]]) In_1=np.transpose(H)
In_2=np.dot(In_1,H)
In_3=inv(In_2)
In_4=np.dot(In_3,In_1)
c=np.dot(In_4,Z)
分离参数:
#分离参数并显示
a1=c[0]
a2=c[1]
b1=c[2]
b2=c[3]
print("a1的值是:",a1)
print("a2的值是:",a2)
print("b1的值是:",b1)
print("b2的值是:",b2)
注意:
由于在python中plt的库是不支持中文的,所以要加上这些代码,保证输出的图片标题的中文显示正常。
#显示中文字体
plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False #用来正常显示负号
结果:
在网上找了半天python画针状图的资料,发现没有。。所以强行用瘦了的柱状图表示针状图了。




总结:
可以看出Python写的系统辨识误差还是有一些的,不过也是受到一般最小二乘参数辨识方法的限制,如果采用递推最小二乘,增广最小二乘等方法可能会进一步提高准确性。笔者尝试过递推最小二乘,但是与MATLAB相比,其代码量大大增加,因此在系统辨识方法上,不建议都用Python来写,MATLAB是个不错的选择。当然,喜欢写python的话,这都不是问题。
代码全文:
# -*- coding: utf-8 -*-
"""
Created on Wed Sep 20 16:11:27 2017
@author: Hangingter
"""
#一般最小二乘辨识 #导入相应科学计算的包
import numpy as np
import matplotlib.pyplot as plt
from operator import xor
from numpy.linalg import inv #显示中文字体
plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False #用来正常显示负号
#产生一组16个N(0,1)的高斯分布的随机噪声
mu=0
sigma=0.1
samplenum=16
n=np.random.normal(mu,sigma,samplenum)
plt.figure(num=1)
plt.plot(n)
plt.title("高斯分布随机噪声")
#M序列产生
L=16
#设置M序列周期
#定义初始值
y=np.zeros(L)
u=np.zeros(L)
y1=1
y2=1
y3=1
y4=0
for i in range(0,L):
x1=xor(y3,y4)
x2=y1
x3=y2
x4=y3
y[i]=y4
if y[i]>0.5:
u[i]=-1
else:
u[i]=1
y1=x1
y2=x2
y3=x3
y4=x4
plt.figure(num=2)
x=np.linspace(0,15,16)
plt.bar(x,u,width=0.1)
plt.title('输入信号M序列')
#最小二乘辨识过程
z=np.zeros(16) for k in range(2,15):
z[k]=-1.6*z[k-1]-0.7*z[k-2]+1.0*u[k-1]+0.4*u[k-2]+1.0*n[k]+1.6*n[k-1]+0.7*n[k-2] plt.figure(num=3)
plt.bar(x,z,width=0.1)
plt.title('输出观测值') H=np.array([[-z[1],-z[0],u[1],u[0]],[-z[2],-z[1],u[2],u[1]],[-z[3],-z[2],u[3],u[2]],[-z[4],-z[3],u[4],u[3]],[-z[5],-z[4],u[5],u[4]],[-z[6],-z[5],u[6],u[5]],[-z[7],-z[6],u[7],u[6]],[-z[8],-z[7],u[8],u[7]],[-z[9],-z[8],u[9],u[8]],[-z[10],-z[9],u[10],u[9]],[-z[11],-z[10],u[11],u[10]],[-z[12],-z[11],u[12],u[11]],[-z[13],-z[12],u[13],u[12]],[-z[14],-z[13],u[14],u[13]]])
Z=np.array([z[2],z[3],z[4],z[5],z[6],z[7],z[8],z[9],z[10],z[11],z[12],z[13],z[14],z[15]]) In_1=np.transpose(H)
In_2=np.dot(In_1,H)
In_3=inv(In_2)
In_4=np.dot(In_3,In_1)
c=np.dot(In_4,Z) #分离参数并显示
a1=c[0]
a2=c[1]
b1=c[2]
b2=c[3]
print("a1的值是:",a1)
print("a2的值是:",a2)
print("b1的值是:",b1)
print("b2的值是:",b2)
参考:
MATLAB版的系统辨识一般最小二乘方法:
http://blog.csdn.net/sinat_20265495/article/details/51426537
python实现一般最小二乘系统辨识方法的更多相关文章
- Python知识(7)--最小二乘求解
这里展示利用python实现的最小二乘的直接求解方法.其求解原理,请参考:最小二乘法拟合非线性函数及其Matlab/Excel 实现 1.一般曲线拟合 代码如下: # -*- coding:utf-8 ...
- 用 Python 排序数据的多种方法
用 Python 排序数据的多种方法 目录 [Python HOWTOs系列]排序 Python 列表有内置就地排序的方法 list.sort(),此外还有一个内置的 sorted() 函数将一个可迭 ...
- sqlalchemy mark-deleted 和 python 多继承下的方法解析顺序 MRO
sqlalchemy mark-deleted 和 python 多继承下的方法解析顺序 MRO 今天在弄一个 sqlalchemy 的数据库基类的时候,遇到了跟多继承相关的一个小问题,因此顺便看了一 ...
- python子类调用父类的方法
python子类调用父类的方法 python和其他面向对象语言类似,每个类可以拥有一个或者多个父类,它们从父类那里继承了属性和方法.如果一个方法在子类的实例中被调用,或者一个属性在子类的实例中被访问, ...
- paip.编程语言方法重载实现的原理及python,php,js中实现方法重载
paip.编程语言方法重载实现的原理及python,php,js中实现方法重载 有些语言,在方法的重载上,形式上不支持函数重载,但可以通过模拟实现.. 主要原理:根据参数个数进行重载,或者使用默认值 ...
- python常用数据类型内置方法介绍
熟练掌握python常用数据类型内置方法是每个初学者必须具备的内功. 下面介绍了python常用的集中数据类型及其方法,点开源代码,其中对主要方法都进行了中文注释. 一.整型 a = 100 a.xx ...
- Python使用MySQL数据库的方法以及一个实例
使用环境:Windows+python3.4+MySQL5.5+Navicat 一.创建连接 1.准备工作,想要使用Python操作MySQL,首先需要安装MySQL-Python的包,在Python ...
- python中List的sort方法的用法
python列表排序 简单记一下python中List的sort方法(或者sorted内建函数)的用法. 关键字: python列表排序 python字典排序 sorted List的元素可以是各种东 ...
- python字符串内容替换的方法(转载)
python字符串内容替换的方法 时间:2016-03-10 06:30:46来源:网络 导读:python字符串内容替换的方法,包括单个字符替换,使用re正则匹配进行字符串模式查找与替换的方法. ...
随机推荐
- es2015及es2017对我们的编程方式造成了什么影响?
记一些写代码中用得到的es6+语法,至于什么正则的拓展,数组的什么fill方法,对我们来说用处不大,就不提及了. 还有es6的import模块和class模块,这些在各种框架中都有体现,而且语法简单, ...
- mongodb Decimal Spring data mongodb Decimal128 SpringMvc 序列化字符串 json converter
Mongodb 3.4 就开始支持Decimal 类型,解决double的精度问题,但是不太好用,MapReduce的时候Array.sum 也不能计算 Decimal.比较坑,但是聚合可以用 Spr ...
- C 语言中模板的几种实现方式
简单宏定义实现 简单宏定义 - 方式一 这种方式将主要实现部分放在一个宏定义中,利用字符替换的方式实现不同 type 的运算,详细思路见代码: simple_macro_1.c #include &l ...
- 实用技巧:如何通过IP地址进行精准定位
在甲方工作的朋友可能会遇到这样的问题,服务器或者系统经常被扫描,通过IP地址我们只能查到某一个市级城市,如下图: 当我们想具体到街道甚至门牌号,该怎么办??? 偶然间发现百度地图有高精度IP定位API ...
- String不可变StringBuffer可变
String是一个类,也可以表示字符串数据类型 String:是对象不是原始类型.为不可变对象,一旦被创建,就不能修改它的值.对于已经存在的String对象的修改都是重新创建一个新的对象,然后把新的值 ...
- mysql数据库基本使用(增删改查)
数据库db,database 数据库:依照某种数据模型进行组织并存放到存储器的数据集合dbms,database management system 数据库管理系统:用来操作和管理数据库的大型服务软件 ...
- Android 进程常驻、进程守护、进程保活技术的总结
转载自:http://blog.csdn.net/marswin89/article/details/50917098 这是一个轻量级的库,配置几行代码,就可以实现在Android上实现进程常驻,也就 ...
- FusionCharts 3D帕累托图
1.设计3D帕累托图的页面 Pareto3D.html: <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN&q ...
- 安装sphinx和coreseek
sphinx简介 Sphinx是由俄罗斯人Andrew Aksyonoff开发的一个全文检索引擎.意图为其他应用提供高速.低空间占用.高结果 相关度的全文搜索功能.Sphinx可以非常容易的与SQL数 ...
- Caused by: java.lang.ClassNotFoundException: org.jbpm.pvm.internal.processengine.SpringHelper
1.错误描述 usage: java org.apache.catalina.startup.Catalina [ -config {pathname} ] [ -nonaming ] { -help ...