CF235B Let's Play Osu! 期望DP
貌似是一道很裸的期望\(DP\)。直接说思路:
设\(f[i]\)表示到\(i\)位置时的期望分数,但是只有\(f[i]\)的话我们发现是无法转移的,我们还需要知道到\(i\)位置时的期望连续长度,于是我们再设一个\(g[i]\)表示到\(i\)位置时的期望连续长度,\(g[i]\)可以\(O(1)\)转移,转移方程为:\(g[i]=(g[i-1]+1)p[i]\),\(p[i]\)为\(i\)位置成功的概率。进而我们来yy\(f[i]\)的转移:
1.\(i\)位置为“O”,设\(x\)为\(i\)位置之前的连续的“O”的个数,则新的收益为\((x+1)^2\),即\(x^2+2x+1\),相差一个\(2x+1\),所以贡献为\(p[i](f[i-1]+2g[i-1]+1)\)
2.\(i\)位置为“X”,贡献为\(f[i-1]\)
综上所述,\(f[i]=f[i-1](1-p[i])+(f[i-1]+2g[i-1]+1)p[i]\)
这样的话代码就很显然了:
#include <bits/stdc++.h>
using namespace std;
int n;
double p[100000+5], f[100000+5], g[100000+5];
int main() {
scanf("%d", &n);
for(int i = 1; i <= n; ++i) scanf("%lf", &p[i]);
for(int i = 1; i <= n; ++i) g[i] = (g[i-1]+1)*p[i], f[i] = f[i-1]*(1-p[i])+(f[i-1]+2*g[i-1]+1)*p[i];
printf("%.8lf\n", f[n]);
return 0;
}
CF235B Let's Play Osu! 期望DP的更多相关文章
- 【BZOJ4318】OSU! 期望DP
[BZOJ4318]OSU! Description osu 是一款群众喜闻乐见的休闲软件. 我们可以把osu的规则简化与改编成以下的样子: 一共有n次操作,每次操作只有成功与失败之分,成功对应1 ...
- 【BZOJ】4318: OSU! 期望DP
[题意]有一个长度为n的01序列,每一段极大的连续1的价值是L^3(长度L).现在给定n个实数表示该位为1的概率,求期望总价值.n<=10^5. [算法]期望DP [题解]后缀长度是一个很关键的 ...
- bzoj 4318 OSU! —— 期望DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4318 期望DP,因为平方的期望不等于期望的平方,所以用公式递推: 第一次推错了囧,还是看这位 ...
- BZOJ 4318: OSU! 期望DP
4318: OSU! 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4318 Description osu 是一款群众喜闻乐见的休闲软件 ...
- BZOJ - 4318: OSU! (期望DP&Attention)
Description osu 是一款群众喜闻乐见的休闲软件. 我们可以把osu的规则简化与改编成以下的样子: 一共有n次操作,每次操作只有成功与失败之分,成功对应1,失败对应0,n次操作对应为1 ...
- BZOJ 4318 OSU! ——期望DP
这次要求$x^3$的概率和. 直接维护三个值$x$ $x^2$ $x^3$的期望. 概率的平方不等于平方的概率. #include <map> #include <ctime> ...
- 【BZOJ】4318: OSU!【期望DP】
4318: OSU! Time Limit: 2 Sec Memory Limit: 128 MBSubmit: 1473 Solved: 1174[Submit][Status][Discuss ...
- 2018.08.30 bzoj4318: OSU!(期望dp)
传送门 简单期望dp. 感觉跟Easy差不多,就是把平方差量进阶成了立方差量,原本维护的是(x+1)2−x2" role="presentation" style=&qu ...
- 概率和期望dp
概率和期望dp 概率和期望好神啊,完全不会. 网上说概率要顺着推,期望要逆着推,然而我目前做的概率期望题正好都与此相反2333 概率: 关于概率:他非常健康 初中概率题非常恐怖.现在来思考一道题: ...
随机推荐
- css3自适应布局单位vw,vh你知道多少?
视口单位(Viewport units) 什么是视口? 在桌面端,视口指的是在桌面端,指的是浏览器的可视区域:而在移动端,它涉及3个视口:Layout Viewport(布局视口),Visual Vi ...
- React-组件的生命周期详解(含React16版本)
在一个组件的整个生命周期中,通过用户的交互来更新state或者props,重新渲染组件,更新页面的ui.组成一个简单的"状态机". react的生命周期三个阶段: Mounting ...
- Android为TV端助力:EventBus跨进程发送消息
单一app内的用法 如果你在单一app内进行多进程开发,那么只需要做以下三步: Step 1 在gradle文件中加入下面的依赖: dependencies { compile 'xiaofe ...
- 章节十、5-CSS---用CSS 通配符定位元素
以下演示操作以该网址中的输入框为例:https://learn.letskodeit.com/p/practice 一.css样式中有三种通配符“^.$.*” 语法:tag[attribute< ...
- SQL SERVER 排查脚本
随着数据量和并发量的增大,数据库有时会遇到CPU,内存,IO 性能问题:整理了一下有关排查数据相关的SQL脚本,以便排查问题之用: 1,哪些SQL 消耗CPU /* 查看哪些SQL语句消耗CPU,找 ...
- [十二省联考2019]D1T1异或粽子
嘟嘟嘟 做这题之前,强烈推荐先把这道题切了P1631序列合并. 这两道题思路基本一模一样. 首先把异或处理成前缀异或,然后维护一个大根堆,每一次取出堆顶加到答案里面,然后把堆顶所在元素的次大的异或值放 ...
- day22 面向对象
面向对象 ''''1.面向过程编程 核心是"过程"二字,过程指的是解决问题的步骤,即先干什么再干什么 基于该思想编写程序就好比在编写一条流水线,是一种机械式的思维方式 ...
- 一个简单的以太坊合约让imtoken支持多签
熟悉比特币和以太坊的人应该都知道,在比特币中有2种类型的地址,1开头的是P2PKH,就是个人地址,3开头的是P2SH,一般是一个多签地址.所以在原生上比特币就支持多签.多签的一个优势就是可以多方对一笔 ...
- 在比特币的OP_RETURN上,大家都干了些啥?
我在之前的一篇文章中介绍了怎么通过C#将一句话写入到比特币的区块链网络中,最近花了好几天的时间,我终于把比特币的区块链数据载入到了SQLServer(具体做法参加我的这篇博客:http://www.c ...
- 在Winform系统界面中对进展阶段的动态展示和处理
在我们做客户关系管理系统的Winform界面的时候,需要对进展阶段这个属性进行一个方便的动态切换和标记处理,如我们根据不同的进展阶段显示不同的相关信息,也可以随时保存当前的阶段信息.其实也是一个比较常 ...