POJ2975 Nim 【博弈论】
Description
Nim is a 2-player game featuring several piles of stones. Players alternate turns, and on his/her turn, a player’s move consists of removing one or more stones from any single pile. Play ends when all the stones have been removed, at which point the last player to have moved is declared the winner.Given a position in Nim, your task is to determine how many winning moves there are in that position.A position in Nim is called “losing” if the first player to move from that position would lose if both sides played perfectly. A “winning move,” then, is a move that leaves the game in a losing position. There is a famous theorem that classifies all losing positions. Suppose a Nim position contains n piles having k1, k2, …, kn stones respectively; in such a position, there are k1 + k2 + … + kn possible moves. We write each ki in binary (base 2). Then, the Nim position is losing if and only if, among all the ki’s, there are an even number of 1’s in each digit position. In other words, the Nim position is losing if and only if the xor of the ki’s is 0.Consider the position with there piles given by k1 = 7, k2 = 11, and k3 = 13. In binary, these values are as follows:
111
1011
1101There are an odd number of 1’s among the rightmost digits, so this position is not losing. However, suppose k3 were changed to be 12. Then, there would be exactly two 1’s in each digit position, and thus, the Nim position would become losing. Since a winning move is any move that leaves the game in a losing position, it follows that removing one stone from the third pile is a winning move when k1 = 7, k2 = 11, and k3 = 13. In fact, there are exactly three winning moves from this position: namely removing one stone from any of the three piles.
题目大意:给你n堆石子,每次可以从任意一堆石子中取走任意多个,但至少取一个。问第一次取有多少种方法使得先手必胜
Input
The input test file will contain multiple test cases, each of which begins with a line indicating the number of piles, 1 ≤ n ≤ 1000.
On the next line, there are n positive integers, 1 ≤ ki ≤ 1,000,000,000, indicating the number of stones in each pile.
The end-of-file is marked by a test case with n = 0 and should not be processed.
多组数据,做到0结束Output
For each test case, write a single line with an integer indicating the number of winning moves from the given Nim position.Sample Input
3
7 11 13
2
1000000000 1000000000
0Sample Output
3
0
Nim游戏的神奇之处在于它的SG值和异或扯上了关系,Nim游戏中先手必败当且仅当x1^x2^...^xn=0,那么,这个为什么是成立的?
- 交换律:x^y=y^x
- 结合律:x^(y^z)=(x^y)^z
- 拥有单位元:0^x=x
- 相同两数运算为0:x^x=0
- 消除律:x^y=x^z⇒y=z
因此,我们得到,对于Nim游戏而言,必败状态当且仅当x1^x2^...^xn=0,对于其他情况,先手必能使当前局面变成必败状态。
#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std; #define ll long long
#define re register
#define gc getchar()
inline int read()
{
re int x(0),f(1);re char ch(gc);
while(ch<'0'||ch>'9') {if(ch=='-')f=-1; ch=gc;}
while(ch>='0'&&ch<='9') x=(x*10)+(ch^48),ch=gc;
return x*f;
} const int N=1e3;
int val[N+10],n; int main()
{
while(n=read(),n)
{
int T=0,ans=0;
for(int i=1;i<=n;++i)
val[i]=read(),T^=val[i];
if(!T) {cout<<0<<endl;break;}
for(int i=1;i<=n;++i)
if(val[i]>=(val[i]^T))
ans++;
cout<<ans<<endl;
}
return 0;
}
POJ2975 Nim 【博弈论】的更多相关文章
- POJ2975 Nim 博弈论 尼姆博弈
http://poj.org/problem?id=2975 题目始终是ac的最大阻碍. 问只取一堆有多少方案可以使当前局面为先手必败. 显然由尼姆博弈的性质可以知道需要取石子使所有堆石子数异或和为0 ...
- poj2975 Nim 胜利的方案数
Nim Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 5545 Accepted: 2597 Description N ...
- (转载)Nim博弈论
最近补上次参加2019西安邀请赛的题,其中的E题出现了Nim博弈论,今天打算好好看看Nim博弈论,在网上看到这篇总结得超级好的博客,就转载了过来. 转载:https://www.cnblogs.com ...
- [poj2975]Nim_博弈论
Nim poj-2975 题目大意:给定n堆石子,问:多少堆石子满足操作之后先手必胜. 注释:$1\le n\le 10^3$. 想法: 我们设M=sg(x1)^sg(x2)^...^sg(xn).其 ...
- poj2975 Nim(经典博弈)
Nim Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 5866 Accepted: 2777 Description N ...
- poj2975(nim游戏取法)
求处于必胜状态有多少种走法. if( (g[i]^ans) <= g[i]) num++; //这步判断很巧妙 // // main.cpp // poj2975 // // Created b ...
- hdu 3032 Nim or not Nim? 博弈论
这题是Lasker’s Nim. Clearly the Sprague-Grundy function for the one-pile game satisfies g(0) = 0 and g( ...
- POJ2975:Nim(Nim博弈)
Nim Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7279 Accepted: 3455 题目链接:http://p ...
- POJ2068 Nim 博弈论 dp
http://poj.org/problem?id=2068 博弈论的动态规划,依然是根据必胜点和必输点的定义,才明白过来博弈论的dp和sg函数差不多完全是两个概念(前者包含后者),sg函数只是mex ...
随机推荐
- Eclipse目录实解
从左1图中可以看到,其中的src/main/java存放java文件,src/main/resources存放项目用到的资源(js,css,图片,文件等).下面的两个文件夹是用来存放测试文件和资源的( ...
- 代码托管-gerrit-介绍与环境搭建
什么是gerrit? 转载自 https://blog.csdn.net/tanshizhen119/article/details/79874127 gerrit是谷歌开源的一个git服务端. 主要 ...
- unity transform 常用操作
1.寻找物体 1.1 寻找满足条件的子物体 ` public static Transform FindObj(Transform transform, Func<Transform, bool ...
- 20190421-那些年使用过的CSS预处理器(CSS Preprocessor)之Sass and Less
写在前面乱七八糟的前言: emmm,还是决定把Sass与Less单独出来写成一篇,可能会稍微好辣么一丢丢?TAT语法特性是真的香,通篇下来能吸收个10%自我感觉已经很nice了,毕竟渣渣的我有渣渣的自 ...
- Android视频录制从不入门到入门系列教程(二)————显示视频图像
1.创建一个空的工程,注意声明下列权限: <uses-permission android:name="android.permission.CAMERA"/> < ...
- MySQL数据库在IO性能优化方面的设置选择(硬件)
提起MySQL数据库在硬件方面的优化无非是CPU.内存和IO.下面我们着重梳理一下关于磁盘I/O方面的优化. 1.磁盘冗余阵列RAID RAID(Redundant Array of Inexpens ...
- iOS多线程GCD的使用
1. GCD 简介 Grand Central Dispatch(GCD)是异步执行任务的技术之一.一般将应用程序中记述的线程管理用的代码在系统级中实现.开发者只需要定义想执行的任务并追加到适当的Di ...
- Linux运维跳槽必备的40道面试精华题(转)
Linux运维跳槽必备的40道面试精华题(转) 下面是一名资深Linux运维求职数十家公司总结的Linux运维面试精华,助力大家年后跳槽找个高薪好工作. 1.什么是运维?什么是游戏运维? 1)运维 ...
- Linux使用IDEA配置maven的web项目骨架archetype(模板) 自定义骨架
说明:本文说的骨架就是 archetype,也可以理解为模板,总是就是指你创建项目时的基本配置. 前言:在使用IDEA创建maven的web项目时,一般都是直接使用提供的默认web项目,如图 然而创建 ...
- MyBatis学习日记(三):戏说MyBatis配置文件
properties标签 properties标签可以用来加载别的配置文件,比如可以加载数据库的配置文件,jdbc.properties. 下面是jdbc.properties jdbc.driver ...