POJ2975 Nim 【博弈论】
Description
Nim is a 2-player game featuring several piles of stones. Players alternate turns, and on his/her turn, a player’s move consists of removing one or more stones from any single pile. Play ends when all the stones have been removed, at which point the last player to have moved is declared the winner.Given a position in Nim, your task is to determine how many winning moves there are in that position.A position in Nim is called “losing” if the first player to move from that position would lose if both sides played perfectly. A “winning move,” then, is a move that leaves the game in a losing position. There is a famous theorem that classifies all losing positions. Suppose a Nim position contains n piles having k1, k2, …, kn stones respectively; in such a position, there are k1 + k2 + … + kn possible moves. We write each ki in binary (base 2). Then, the Nim position is losing if and only if, among all the ki’s, there are an even number of 1’s in each digit position. In other words, the Nim position is losing if and only if the xor of the ki’s is 0.Consider the position with there piles given by k1 = 7, k2 = 11, and k3 = 13. In binary, these values are as follows:
111
1011
1101There are an odd number of 1’s among the rightmost digits, so this position is not losing. However, suppose k3 were changed to be 12. Then, there would be exactly two 1’s in each digit position, and thus, the Nim position would become losing. Since a winning move is any move that leaves the game in a losing position, it follows that removing one stone from the third pile is a winning move when k1 = 7, k2 = 11, and k3 = 13. In fact, there are exactly three winning moves from this position: namely removing one stone from any of the three piles.
题目大意:给你n堆石子,每次可以从任意一堆石子中取走任意多个,但至少取一个。问第一次取有多少种方法使得先手必胜
Input
The input test file will contain multiple test cases, each of which begins with a line indicating the number of piles, 1 ≤ n ≤ 1000.
On the next line, there are n positive integers, 1 ≤ ki ≤ 1,000,000,000, indicating the number of stones in each pile.
The end-of-file is marked by a test case with n = 0 and should not be processed.
多组数据,做到0结束Output
For each test case, write a single line with an integer indicating the number of winning moves from the given Nim position.Sample Input
3
7 11 13
2
1000000000 1000000000
0Sample Output
3
0
Nim游戏的神奇之处在于它的SG值和异或扯上了关系,Nim游戏中先手必败当且仅当x1^x2^...^xn=0,那么,这个为什么是成立的?
- 交换律:x^y=y^x
- 结合律:x^(y^z)=(x^y)^z
- 拥有单位元:0^x=x
- 相同两数运算为0:x^x=0
- 消除律:x^y=x^z⇒y=z
因此,我们得到,对于Nim游戏而言,必败状态当且仅当x1^x2^...^xn=0,对于其他情况,先手必能使当前局面变成必败状态。
#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std; #define ll long long
#define re register
#define gc getchar()
inline int read()
{
re int x(0),f(1);re char ch(gc);
while(ch<'0'||ch>'9') {if(ch=='-')f=-1; ch=gc;}
while(ch>='0'&&ch<='9') x=(x*10)+(ch^48),ch=gc;
return x*f;
} const int N=1e3;
int val[N+10],n; int main()
{
while(n=read(),n)
{
int T=0,ans=0;
for(int i=1;i<=n;++i)
val[i]=read(),T^=val[i];
if(!T) {cout<<0<<endl;break;}
for(int i=1;i<=n;++i)
if(val[i]>=(val[i]^T))
ans++;
cout<<ans<<endl;
}
return 0;
}
POJ2975 Nim 【博弈论】的更多相关文章
- POJ2975 Nim 博弈论 尼姆博弈
http://poj.org/problem?id=2975 题目始终是ac的最大阻碍. 问只取一堆有多少方案可以使当前局面为先手必败. 显然由尼姆博弈的性质可以知道需要取石子使所有堆石子数异或和为0 ...
- poj2975 Nim 胜利的方案数
Nim Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 5545 Accepted: 2597 Description N ...
- (转载)Nim博弈论
最近补上次参加2019西安邀请赛的题,其中的E题出现了Nim博弈论,今天打算好好看看Nim博弈论,在网上看到这篇总结得超级好的博客,就转载了过来. 转载:https://www.cnblogs.com ...
- [poj2975]Nim_博弈论
Nim poj-2975 题目大意:给定n堆石子,问:多少堆石子满足操作之后先手必胜. 注释:$1\le n\le 10^3$. 想法: 我们设M=sg(x1)^sg(x2)^...^sg(xn).其 ...
- poj2975 Nim(经典博弈)
Nim Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 5866 Accepted: 2777 Description N ...
- poj2975(nim游戏取法)
求处于必胜状态有多少种走法. if( (g[i]^ans) <= g[i]) num++; //这步判断很巧妙 // // main.cpp // poj2975 // // Created b ...
- hdu 3032 Nim or not Nim? 博弈论
这题是Lasker’s Nim. Clearly the Sprague-Grundy function for the one-pile game satisfies g(0) = 0 and g( ...
- POJ2975:Nim(Nim博弈)
Nim Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7279 Accepted: 3455 题目链接:http://p ...
- POJ2068 Nim 博弈论 dp
http://poj.org/problem?id=2068 博弈论的动态规划,依然是根据必胜点和必输点的定义,才明白过来博弈论的dp和sg函数差不多完全是两个概念(前者包含后者),sg函数只是mex ...
随机推荐
- oracle学习笔记(六) JDBC使用
JDBC使用 1. 导包 直接使用IDEA导入依赖包即可 新建一个lib,把jar包放在这里 2. 加载驱动 Class.forName("oracle.jdbc.driver.Oracle ...
- python 正则验证 IP地址与MAC地址
#coding=utf-8 import re def isValidIp(ip): if re.match(r"^\s*\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3} ...
- es6 for of 循环
es6 新增了 for of 循环,只要继承了Iterator 接口的数据集合都可以使用 for of 去循环 for of 循环,统一数据集合的循环方法,解决了forEach循环的不能使用break ...
- Web前端新学
本人大学时学的是网络工程,那时候只是大概学了一点HTML和CSS.毕业后没有找IT方面的工作,所以对专业知识忘得差不多了.然由于生活现状,终是决心重新好好学习IT,刚入学的一周学习了C#语言的一些知识 ...
- Java实现"命令式"简易文本编辑器原型
源自早先想法, 打算从界面方向做些尝试. 找到个简单文本编辑器的实现: Simple Text Editor - Java Tutorials. 原本的菜单/按钮界面如下. 包括基本功能: 新建/打开 ...
- WPF:Webbrowser 捕获关闭事件
有点难描述说的是什么.大概就是下面这个图:窗体中嵌套一个Webbrowser,现在网页请求关闭 响应MessageHook事件: this.webBrowser.MessageHook += webB ...
- [20190419]shared latch spin count 2.txt
[20190419]shared latch spin count 2.txt --//上午测试shared latch XX模式的情况,链接:http://blog.itpub.net/267265 ...
- C#枚举(Enum)小结
枚举概念 枚举类型(也称为枚举)提供了一种有效的方式来定义可能分配给变量的一组已命名整数常量.该类型使用enum关键字声明. 示例代码1 enum Day { Sunday, Monday, Tues ...
- js用canvans 实现简单的粒子运动
<html> <head> <meta http-equiv="Content-Type" content="text/html; char ...
- linux杀毒软件ClamAV的安装使用
1.安装依赖环境 yum install -y zlib openssl-devel yum groupinstall -y "Development Tools" apt ins ...