Description
Nim is a 2-player game featuring several piles of stones. Players alternate turns, and on his/her turn, a player’s move consists of removing one or more stones from any single pile. Play ends when all the stones have been removed, at which point the last player to have moved is declared the winner.

Given a position in Nim, your task is to determine how many winning moves there are in that position.A position in Nim is called “losing” if the first player to move from that position would lose if both sides played perfectly. A “winning move,” then, is a move that leaves the game in a losing position. There is a famous theorem that classifies all losing positions. Suppose a Nim position contains n piles having k1, k2, …, kn stones respectively; in such a position, there are k1 + k2 + … + kn possible moves. We write each ki in binary (base 2). Then, the Nim position is losing if and only if, among all the ki’s, there are an even number of 1’s in each digit position. In other words, the Nim position is losing if and only if the xor of the ki’s is 0.Consider the position with there piles given by k1 = 7, k2 = 11, and k3 = 13. In binary, these values are as follows:

111
1011
1101

There are an odd number of 1’s among the rightmost digits, so this position is not losing. However, suppose k3 were changed to be 12. Then, there would be exactly two 1’s in each digit position, and thus, the Nim position would become losing. Since a winning move is any move that leaves the game in a losing position, it follows that removing one stone from the third pile is a winning move when k1 = 7, k2 = 11, and k3 = 13. In fact, there are exactly three winning moves from this position: namely removing one stone from any of the three piles.

题目大意:给你n堆石子,每次可以从任意一堆石子中取走任意多个,但至少取一个。问第一次取有多少种方法使得先手必胜

Input
The input test file will contain multiple test cases, each of which begins with a line indicating the number of piles, 1 ≤ n ≤ 1000.
On the next line, there are n positive integers, 1 ≤ ki ≤ 1,000,000,000, indicating the number of stones in each pile.
The end-of-file is marked by a test case with n = 0 and should not be processed.
多组数据,做到0结束

Output
For each test case, write a single line with an integer indicating the number of winning moves from the given Nim position.

Sample Input
3
7 11 13
2
1000000000 1000000000
0

Sample Output
3
0

Nim游戏的神奇之处在于它的SG值和异或扯上了关系,Nim游戏中先手必败当且仅当x1^x2^...^xn=0,那么,这个为什么是成立的?

  • 交换律:x^y=y^x
  • 结合律:x^(y^z)=(x^y)^z
  • 拥有单位元:0^x=x
  • 相同两数运算为0:x^x=0
  • 消除律:x^y=x^z⇒y=z

因此,我们得到,对于Nim游戏而言,必败状态当且仅当x1^x2^...^xn=0,对于其他情况,先手必能使当前局面变成必败状态。

#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std; #define ll long long
#define re register
#define gc getchar()
inline int read()
{
re int x(0),f(1);re char ch(gc);
while(ch<'0'||ch>'9') {if(ch=='-')f=-1; ch=gc;}
while(ch>='0'&&ch<='9') x=(x*10)+(ch^48),ch=gc;
return x*f;
} const int N=1e3;
int val[N+10],n; int main()
{
while(n=read(),n)
{
int T=0,ans=0;
for(int i=1;i<=n;++i)
val[i]=read(),T^=val[i];
if(!T) {cout<<0<<endl;break;}
for(int i=1;i<=n;++i)
if(val[i]>=(val[i]^T))
ans++;
cout<<ans<<endl;
}
return 0;
}

  

POJ2975 Nim 【博弈论】的更多相关文章

  1. POJ2975 Nim 博弈论 尼姆博弈

    http://poj.org/problem?id=2975 题目始终是ac的最大阻碍. 问只取一堆有多少方案可以使当前局面为先手必败. 显然由尼姆博弈的性质可以知道需要取石子使所有堆石子数异或和为0 ...

  2. poj2975 Nim 胜利的方案数

    Nim Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5545   Accepted: 2597 Description N ...

  3. (转载)Nim博弈论

    最近补上次参加2019西安邀请赛的题,其中的E题出现了Nim博弈论,今天打算好好看看Nim博弈论,在网上看到这篇总结得超级好的博客,就转载了过来. 转载:https://www.cnblogs.com ...

  4. [poj2975]Nim_博弈论

    Nim poj-2975 题目大意:给定n堆石子,问:多少堆石子满足操作之后先手必胜. 注释:$1\le n\le 10^3$. 想法: 我们设M=sg(x1)^sg(x2)^...^sg(xn).其 ...

  5. poj2975 Nim(经典博弈)

    Nim Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5866   Accepted: 2777 Description N ...

  6. poj2975(nim游戏取法)

    求处于必胜状态有多少种走法. if( (g[i]^ans) <= g[i]) num++; //这步判断很巧妙 // // main.cpp // poj2975 // // Created b ...

  7. hdu 3032 Nim or not Nim? 博弈论

     这题是Lasker’s Nim. Clearly the Sprague-Grundy function for the one-pile game satisfies g(0) = 0 and g( ...

  8. POJ2975:Nim(Nim博弈)

    Nim Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7279   Accepted: 3455 题目链接:http://p ...

  9. POJ2068 Nim 博弈论 dp

    http://poj.org/problem?id=2068 博弈论的动态规划,依然是根据必胜点和必输点的定义,才明白过来博弈论的dp和sg函数差不多完全是两个概念(前者包含后者),sg函数只是mex ...

随机推荐

  1. throw和throws的区别以及try,catch,finally在有return的情况下执行的顺序

    一,抛出异常有三种形式,一是throw,一个throws,还有一种系统自动抛异常.下面它们之间的异同. (1).系统自动抛异常 1.当程序语句出现一些逻辑错误.主义错误或类型转换错误时,系统会自动抛出 ...

  2. php中读取中文文件夹及文件报错

    php读取时出现中文乱码 一般php输出中出现中文乱码我们可用 header ('content:text/html;charset="utf-8"'); php中读取中文文件夹及 ...

  3. IM多类型holder封装

    如标题,这是一个在列表多类型视图时的一个简化封装方法,减少多余代码,提高复用性,更好迭代扩展,先看视图列表效果图 GitHub:https://github.com/1024477951/Fragme ...

  4. 如何修改Recovery的字符串资源

    前言:在实际的ROM修改中,Recovery的修改还是会经常遇到的,这篇文章主要讲解如何修改Recovery字符串.   首先我们先了解下大概的流程. 1.screen_ui.cpp 中的Screen ...

  5. 纯Java实现微信朋友圈分享图

    纯Java实现微信朋友圈分享图 1.实现分享图的效果 2.开发环境 2.1 JDK * oracle's jdk 1.8以上 2.2 字体 * 若选择了微软雅黑字体又是代码部署到Linux,则需要安装 ...

  6. UDK Stat命令

    Stat命令(chs  en)提供了游戏和引擎各个方面的实时统计信息,输入不同参数会在屏幕HUD上显示对应统计数据. 非Shipping版的UDK才会启用STATS宏,统计逻辑才会编译进exe,才能使 ...

  7. jQuery字母大小写转换函数

    toLowerCase() ------ 将字符串中的所有字符都转换成小写: toUpperCase() ------ 将字符串中的所有字符都转换成大写:

  8. Python-语法模板大全(常用)

    目录 1.怎么存数据 变量: 字符串: 不可变对象 列表: 元组: 字典: 三大容器的遍历方法 2.怎么用数据 数字操作符: 判断循环: 3.函数 4. Python核心编程 4.1. 列表生成器 5 ...

  9. 4.16 反射和jvm

  10. Docker版本与安装介绍

    Docker版本与安装介绍 Docker-CE 和 Docker-EE Centos 上安装 Docker-CE Ubuntu 上安装 Docker-CE Docker-CE和Docker-EE Do ...