3456: 城市规划

题意:n个点组成的无向连通图个数


以前做过,今天复习一下


令\(f[n]\)为n个点的无向连通图个数

n个点的完全图个数为\(2^{\binom{n}{2}}\)

和Bell数的推导很类似,枚举第一个cc的点的个数

\[2^{\binom{n}{2}} = \sum_{i=1}^n \binom{n-1}{i-1} f(i) 2^{\binom{n-i}{2}}
\]

整理后

\[\frac{2^{\binom{n}{2}}}{(n-1)!} = \sum_{i=1}^n \frac{f(i)}{(i-1)!}\frac{2^{\binom{n-i}{2}}}{(n-i)!}
\]

这是卷积的形式

\[C(x) = A(x)B(x) \rightarrow A(x) = C(x)B^{-1}(x)
\]

多项式求逆就可做了

注意\(b_0=1\)



其实就是EGP求ln......

简单的有标号集合计数

\[G(x) = \sum_{i\ge 0} 2^{\binom{i}{2}}\frac{x^i}{i!} = \sum_{i \ge 0} \frac{F(x)^i}{i!} = e^{F(x)}\\
F(x) = \ln G(x) = \int \frac{G'(x)}{G(x)}dx
\]



第一份是多项式求ln的代码,注意EGP要除以阶乘逆元

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
const int N = (1<<18) + 5;
inline int read(){
char c=getchar();int x=0,f=1;
while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
return x*f;
} int P = 1004535809, inv2 = (P+1)/2;
inline int Pow(ll a, int b) {
ll ans = 1;
for(; b; b>>=1, a=a*a%P)
if(b&1) ans=ans*a%P;
return ans;
} ll inv[N];
namespace ntt {
int g = 3, rev[N];
void dft(int *a, int n, int flag) {
int k = 0; while((1<<k) < n) k++;
for(int i=0; i<n; i++) {
rev[i] = (rev[i>>1]>>1) | ((i&1)<<(k-1));
if(i < rev[i]) swap(a[i], a[rev[i]]);
}
for(int l=2; l<=n; l<<=1) {
int m = l>>1, wn = Pow(g, flag == 1 ? (P-1)/l : P-1-(P-1)/l);
for(int *p = a; p != a+n; p += l)
for(int k=0, w=1; k<m; k++, w = (ll)w*wn %P) {
int t = (ll) w * p[k+m] %P, r = p[k];
p[k+m] = (r - t + P) %P;
p[k] = (r + t) %P;
}
}
if(flag == -1) {
ll inv = Pow(n, P-2);
for(int i=0; i<n; i++) a[i] = a[i] * inv %P;
}
} void inverse(int *a, int *b, int l) {
static int t[N];
if(l == 1) {b[0] = Pow(a[0], P-2); return;}
inverse(a, b, l>>1);
int n = l<<1;
for(int i=0; i<l; i++) t[i] = a[i], t[i+l] = 0;
dft(t, n, 1); dft(b, n, 1);
for(int i=0; i<n; i++) b[i] = (ll) b[i] * (2 - (ll) t[i] * b[i] %P + P) %P;
dft(b, n, -1); for(int i=l; i<n; i++) b[i] = 0;
} void ln(int *a, int *b, int l) {
static int da[N], ia[N];
int n = l<<1;
for(int i=0; i<n; i++) da[i] = ia[i] = 0;
for(int i=0; i<l-1; i++) da[i] = (ll) (i+1) * a[i+1] %P;
inverse(a, ia, l);
dft(da, n, 1); dft(ia, n, 1);
for(int i=0; i<n; i++) b[i] = (ll) da[i] * ia[i] %P;
dft(b, n, -1);
for(int i=l-1; i>0; i--) b[i] = (ll) inv[i] * b[i-1] %P; b[0] = 0;
for(int i=l; i<n; i++) b[i] = 0;
} } ll fac[N], facInv[N];
int n, a[N], b[N];
int main() {
freopen("in", "r", stdin);
n = read();
int len = 1;
while(len <= n) len <<= 1;
inv[1] = 1; fac[0] = facInv[0] = 1;
for(int i=1; i<=n; i++) {
if(i != 1) inv[i] = (P - P/i) * inv[P%i] %P;
fac[i] = fac[i-1] * i %P;
facInv[i] = facInv[i-1] * inv[i] %P;
}
a[0] = 1;
for(int i=1; i<=n; i++) a[i] = Pow(2, (ll) i * (i - 1) /2 %(P-1)) * facInv[i] %P;
ntt::ln(a, b, len);
//for(int i=0; i<=n; i++) printf("%d ", b[i]); puts("");
int ans = b[n] * fac[n] %P;
printf("%d", ans);
}
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
const int N = (1<<18) + 5;
inline int read(){
char c=getchar();int x=0,f=1;
while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
return x*f;
} ll P = 1004535809;
inline ll Pow(ll a, int b) {
ll ans = 1;
for(; b; b>>=1, a=a*a%P)
if(b&1) ans=ans*a%P;
return ans;
}
inline void mod(int &x) {if(x>=P) x-=P; else if(x<0) x+=P;}
namespace fnt {
int n, g=3, rev[N];
void dft(int *a, int n, int flag=1) {
for(int i=0; i<n; i++) if(i < rev[i]) swap(a[i], a[rev[i]]); for(int l=2; l<=n; l<<=1) {
int m = l>>1;
ll wn = Pow(g, flag==1 ? (P-1)/l : P-1-(P-1)/l);
for(int *p=a; p!=a+n; p+=l) {
ll w = 1;
for(int k=0; k<m; k++) {
ll t = p[k+m] * w %P;
mod(p[k+m] = p[k] - t);
mod(p[k] = p[k] + t);
w = w * wn %P;
}
}
}
if(flag == -1) {
ll inv = Pow(n, P-2);
for(int i=0; i<n; i++) a[i] = a[i] * inv %P;
}
}
int t[N];
void inverse(int *a, int *b, int l) { // mod x^l
if(l == 1) {b[0] = Pow(a[0], P-2); return;}
inverse(a, b, (l+1)>>1);
int n = 1, k = 0; while(n < l<<1) n<<=1, k++;
for(int i=0; i<n; i++) rev[i] = (rev[i>>1]>>1) | ((i&1)<<(k-1));
for(int i=0; i<l; i++) t[i] = a[i]; for(int i=l; i<n; i++) t[i] = 0;
dft(t, n, 1); dft(b, n, 1);
for(int i=0; i<n; i++) b[i] = (ll) b[i] * (2 - (ll) t[i] * b[i] %P + P) %P;
dft(b, n, -1);
for(int i=l; i<n; i++) b[i] = 0;
} void mul(int *a, int *b, int l) {
int n = 1; while(n < l<<1) n<<=1;
dft(a, n, 1); dft(b, n, 1);
for(int i=0; i<n; i++) a[i] = (ll) a[i] * b[i] %P;
dft(a, n, -1);
}
} int n, a[N], b[N], bi[N];
ll inv[N], fac[N], facInv[N];
int main() {
freopen("in", "r", stdin);
n=read();
inv[1] = 1; fac[0] = facInv[0] = 1;
for(int i=1; i<=n; i++) {
if(i != 1) inv[i] = (P - P/i) * inv[P%i] %P;
fac[i] = fac[i-1] * i %P;
facInv[i] = facInv[i-1] * inv[i] %P;
}
for(int i=1; i<=n; i++) {
ll mi = Pow(2, (ll) i * (i-1) / 2 %(P-1));
a[i] = mi * facInv[i-1] %P;
b[i] = mi * facInv[i] %P;
}
b[0] = 1; fnt::inverse(b, bi, n+1);
fnt::mul(a, bi, n+1);
ll ans = a[n] * fac[n-1] %P;
printf("%lld", ans);
}

BZOJ 3456: 城市规划 [多项式求逆元 组合数学 | 生成函数 多项式求ln]的更多相关文章

  1. bzoj 3456 城市规划 无向简单连通图个数 多项式求逆

    题目大意 求n个点的无向简单连通图个数 做法1 \(f[i]\)表示i个点的无向简单连通图个数 \(g[i]=2^{\frac {i*(i-1)}{2}}\)表示i个点的无向简单图个数(不要求连通) ...

  2. [BZOJ 3456]城市规划(cdq分治+FFT)

    [BZOJ 3456]城市规划(cdq分治+FFT) 题面 求有标号n个点无向连通图数目. 分析 设\(f(i)\)表示\(i\)个点组成的无向连通图数量,\(g(i)\)表示\(i\)个点的图的数量 ...

  3. bzoj 3456 城市规划 —— 分治FFT / 多项式求逆 / 指数型生成函数(多项式求ln)

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3456 首先考虑DP做法,正难则反,考虑所有情况减去不连通的情况: 而不连通的情况就是那个经典 ...

  4. BZOJ 3456: 城市规划 [多项式求逆元 DP]

    题意: 求出n个点的简单(无重边无自环)无向连通图数目.方案数mod 1004535809(479 * 2 ^ 21 + 1)即可. n<=130000 DP求方案 g(n) n个点所有图的方案 ...

  5. bzoj 3456: 城市规划【NTT+多项式求逆】

    参考:http://blog.miskcoo.com/2015/05/bzoj-3456 首先推出递推式(上面的blog讲的挺清楚的),大概过程是正难则反,设g为n个点的简单(无重边无自环)无向图数目 ...

  6. bzoj 3456 城市规划——分治FFT / 多项式求逆 / 多项式求ln

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3456 分治FFT: 设 dp[ i ] 表示 i 个点时连通的方案数. 考虑算补集:连通的方 ...

  7. BZOJ 3456: 城市规划 与 多项式求逆算法介绍(多项式求逆, dp)

    题面 求有 \(n\) 个点的无向有标号连通图个数 . \((1 \le n \le 1.3 * 10^5)\) 题解 首先考虑 dp ... 直接算可行的方案数 , 容易算重复 . 我们用总方案数减 ...

  8. BZOJ 3456 城市规划 ( NTT + 多项式求逆 )

    题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=3456 题意: 求出\(n\)个点的简单(无重边无自环)无向连通图的个数.(\(n< ...

  9. BZOJ 3456: 城市规划 多项式求逆

    Description 刚刚解决完电力网络的问题, 阿狸又被领导的任务给难住了.  刚才说过, 阿狸的国家有n个城市, 现在国家需要在某些城市对之间建立一些贸易路线, 使得整个国家的任意两个城市都直接 ...

随机推荐

  1. 文件末尾判断feof

    feof 作用:如果文件结束,则返回非0值,否则返回0 但要注意的是feof要读取到文件结束标志EOF后,才能判断文件是否结束. 所以使用while(!feof(pFile))会出现最后fread会返 ...

  2. Spring的IOC分析(二)源码

    承接上节继续,分析Ioc的工作原理,在典型的 IOC 场景中,容器创建了所有对象,并设置必要的属性将它们连接在一起(同时一个叫DI"依赖注入"或DL"依赖查找" ...

  3. [国嵌笔记][029][ARM处理器启动流程分析v2]

    2440启动流程 启动方式:nor flash启动.nand flash启动 地址布局: 选择nor flash启动时,SROM(nor flash)地址为0x00000000 选择nand flas ...

  4. C++ 初始化列表(转)

    转载自:http://www.cnblogs.com/graphics/archive/2010/07/04/1770900.html 何谓初始化列表 与其他函数不同,构造函数除了有名字,参数列表和函 ...

  5. android项目红色感叹号

    Project --> Clean 清理一下,一般要注意的,如果是你的项目文件有错误,特别是xml文件,清理后那个R资源文件会不见的,那就需要你把错误修正后自动生成的.

  6. sqllite小型数据库的使用

    1.适用场景:免安装型数据库:数据量不大,本地化管理:不依赖其他第三方类库:2.具体使用方法:添加sqllite类库引用 数据库连接定义,数据库以文件形式存储在sqllitedb/solution.d ...

  7. linux 如何降低入向软中断占比

    最近遇到一个问题,当tcp收包的时候,我们的服务器的入向软中断比例很高. 我们知道,napi模式,可以降低收包入向软中断占比,那么,针对napi模式,能不能优化?本文针对2.6.32-358内核进行分 ...

  8. JavaSE-反射-获取类或者对象的四种方法

    1.使用Class类的静态方法Class.forName("xxxx"); 新建一个要想要获取的类 package org.burning.sport.javase.classlo ...

  9. WebP 图片实践之路

    我们会从三部分来聊聊webp这个话题. 什么是webp,它有什么用? 使用webp的常规方法以及优劣. 我们是如何用上webp的. PS:如果是对webp有一定了解的朋友,建议直接看第三部分.因为是讲 ...

  10. LINUX读写文件区别

    body, table{font-family: 微软雅黑; font-size: 10pt} table{border-collapse: collapse; border: solid gray; ...