BZOJ 4407: 于神之怒加强版 [莫比乌斯反演 线性筛]
题意:提前给出\(k\),求\(\sum\limits_{i=1}^n \sum\limits_{j=1}^m gcd(i,j)^k\)
套路推♂倒
\]
是一个\(g = idk * \mu\)啊,单位幂函数和莫比乌斯函数的卷积!
\(g(1) = 1\)
\(g(p) = -1 + p^k\)
因为带着\(\mu\),只有sf才有贡献
所以\(p \mid i\)只能把\(p\)放到\(d^k\)里了,就是\(g(i)\cdot p\)
或者考虑\(g(p^k)\)只有1和p有贡献也可以,直接得到计算公式再递推
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
using namespace std;
const int N=5e6+5, INF=1e9, P=1e9+7;
#define pii pair<int, int>
#define MP make_pair
#define fir first
#define sec second
typedef long long ll;
inline int read(){
char c=getchar();int x=0,f=1;
while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
return x*f;
}
int n, m, k;
int notp[N], p[N], mu[N];
ll pk[N], g[N];
inline ll Pow(ll a, int b) {
ll ans = 1;
for(; b; b>>=1, a=a*a%P)
if(b&1) ans = ans*a%P;
return ans;
}
inline ll powk(int a) {return pk[a] ? pk[a] : pk[a]=Pow(a, k);}
void sieve(int n) {
mu[1] = 1; g[1] = 1;
for(int i=2; i<=n; i++) {
if(!notp[i]) p[++p[0]] = i, mu[i] = -1, g[i] = -1 + powk(i);
for(int j=1; j<=p[0] && i*p[j]<=n; j++) {
int t = i*p[j];
notp[t] = 1;
if(i%p[j] == 0) {
g[t] = g[i]*powk(p[j])%P;
mu[t] = 0;
break;
}
g[t] = g[i]*g[p[j]]%P;
mu[t] = -mu[i];
}
}
for(int i=1; i<=n; i++) g[i] = (g[i] + g[i-1])%P;
}
ll cal(int n, int m) {
ll ans=0; int r;
for(int i=1; i<=n; i=r+1) {
r = min(n/(n/i), m/(m/i));
ans = (ans+ (g[r] - g[i-1]) * (n/i)%P * (m/i)%P )%P;
}
return (ans + P) %P;
}
int main() {
//freopen("in","r",stdin);
int T=read(); k=read();
sieve(N-1);
while(T--) {
n=read(); m=read();
if(n>m) swap(n, m);
printf("%lld\n", cal(n, m));
}
}
BZOJ 4407: 于神之怒加强版 [莫比乌斯反演 线性筛]的更多相关文章
- bzoj 4407 于神之怒加强版 (反演+线性筛)
于神之怒加强版 Time Limit: 80 Sec Memory Limit: 512 MBSubmit: 1184 Solved: 535[Submit][Status][Discuss] D ...
- BZOJ 4407: 于神之怒加强版 莫比乌斯反演 + 线筛积性函数
Description 给下N,M,K.求 Input 输入有多组数据,输入数据的第一行两个正整数T,K,代表有T组数据,K的意义如上所示,下面第二行到第T+1行,每行为两个正整数N,M,其意 ...
- 【bzoj4407】于神之怒加强版 莫比乌斯反演+线性筛
题目描述 给下N,M,K.求 输入 输入有多组数据,输入数据的第一行两个正整数T,K,代表有T组数据,K的意义如上所示,下面第二行到第T+1行,每行为两个正整数N,M,其意义如上式所示. 输出 如题 ...
- BZOJ 4407 于神之怒加强版 (莫比乌斯反演 + 分块)
4407: 于神之怒加强版 Time Limit: 80 Sec Memory Limit: 512 MBSubmit: 1067 Solved: 494[Submit][Status][Disc ...
- 【BZOJ-4407】于神之怒加强版 莫比乌斯反演 + 线性筛
4407: 于神之怒加强版 Time Limit: 80 Sec Memory Limit: 512 MBSubmit: 241 Solved: 119[Submit][Status][Discu ...
- BZOJ.4407.于神之怒加强版(莫比乌斯反演)
题目链接 Description 求\[\sum_{i=1}^n\sum_{j=1}^m\gcd(i,j)^K\ \mod\ 10^9+7\] Solution 前面部分依旧套路. \[\begin{ ...
- BZOJ4407: 于神之怒加强版(莫比乌斯反演 线性筛)
Description 给下N,M,K.求 感觉好迷茫啊,很多变换看的一脸懵逼却又不知道去哪里学.一道题做一上午也是没谁了,, 首先按照套路反演化到最后应该是这个式子 $$ans = \sum_{d ...
- bzoj 2820 YY的GCD - 莫比乌斯反演 - 线性筛
Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种 傻×必 ...
- BZOJ 3309: DZY Loves Math [莫比乌斯反演 线性筛]
题意:\(f(n)\)为n的质因子分解中的最大幂指数,求\(\sum_{i=1}^n \sum_{j=1}^m f(gcd(i,j))\) 套路推♂倒 \[ \sum_{D=1}^n \sum_{d| ...
随机推荐
- [20160711][neven代码移植Windows]
相关说明 neven代码用于人脸检测,该代码是从Android源代码中抽取出来的,可以在Linux系统下通过make命令直接进行编译,并且可以通过代码中opencv目录下的测试文件进行测试. 移植环境 ...
- 从零开始学习前端开发 — 18、BFC
一. BFC的概念 BFC--block formating context的缩写,中文译为"块级格式化上下文" 二.如何触发BFC 1.设置float除none以外的值(left ...
- linux下 ls -l 命令显示结果每一列代表什么意思
第一个栏位,表示文件的属性.Linux的文件基本上分为三个属性:可读(r),可写(w),可执行(x).但是这里有十个格子可以添(具体程序实现时,实际上是十个bit位).第一个小格是特殊表示格,表示目录 ...
- tp5命名空间
- 如何控制input框!
ENTER键可以让光标移到下一个输入框 只能是中文 屏蔽输入法 只能输入英文和数字 只能是数字 只能显示,不能修改 只能输数字,判断按键的值 function onlyNum() { ...
- 2.移植3.4内核-使内核支持烧写yaffs2
在上章-制作文件系统,并使内核成功启动jffs2文件系统了 本章便开始使内核支持烧写yaffs2文件系统 1.首先获取yaffs2源码(参考git命令使用详解) cd /work/nfs_root g ...
- NSMutableArray 记住取不到时要进行强转
NSMutableArray 记住取不到时要进行强转
- Codeforces 437 D. The Child and Zoo 并查集
题目链接:D. The Child and Zoo 题意: 题意比较难懂,是指给出n个点并给出这些点的权值,再给出m条边.每条边的权值为该条路连接的两个区中权值较小的一个.如果两个区没有直接连接,那么 ...
- 用jquery怎么删除<table>的一行
摘录网址:用jquery怎么删除<table>的一行 思路:获取<table>的一行,然后使用 remove() 方法删除之.实例演示如下: 1.HTML结构 <tabl ...
- /dev/shm 引起的内存统计问题
最近,有个同事问我,怎么准确地描述linux系统到底还有多少内存可供我使用.这里不扯内存碎片问题,就说剩余总量. 如下: cat /proc/meminfo MemTotal: 263796812 k ...