4417: [Shoi2013]超级跳马

Time Limit: 10 Sec  Memory Limit: 256 MB
Submit: 379  Solved: 230
[Submit][Status][Discuss]

Description

现有一个n行m列的棋盘,一只马欲从棋盘的左上角跳到右下角。每一步它向右跳奇数列,且跳到本行或相邻行。跳越期间,马不能离开棋盘。例如,当n = 3, m = 10时,下图是一种可行的跳法。
 
试求跳法种数mod 30011。

Input

仅有一行,包含两个正整数n, m,表示棋盘的规模。

Output

仅有一行,包含一个整数,即跳法种数mod 30011。

Sample Input

3 5

Sample Output

10

HINT

对于100%的数据,1 ≤ n ≤ 50,2 ≤ m ≤ 10^9

题解

首先我们发现由于某个点的状态可以从与它所在列的编号的奇偶性不同的所有列转移, 所以这应该是一个前缀和.

而第 $i$ 列的前缀和可以从前一列转移, 但奇数列与偶数列所转移的位置并不同, 所以转移过程中需要记录两个参考向量. 这样的话转移过程中的向量维数就是 $2n$ , 我们就需要一个 $2n\times 2n$ 的矩阵了. 我的转移矩阵大概长这样:

其中左上部分用于统计答案, 左下部分把奇偶性相同的列也加和起来, 右上部分用于把上一列答案下推一列.

然后最后一轮的时候要把左下和右上部分置零(其实主要是左下部分置零, 因为奇偶性相同的列不能再加入答案了)

A掉之后整个人都赛艇了2333333

参考代码

GitHub

 #include <cstdio>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm> const int MOD=; int n,m; struct Matrix{
int n;
int m[][];
Matrix(int n=){
this->n=n;
memset(m,,sizeof(m));
}
}; struct Vector{
int n;
int v[];
Vector(int n=){
this->n=n;
memset(v,,sizeof(v));
}
}; Vector operator* (const Vector& v,const Matrix& m){
Vector ans(v.n);
for(int i=;i<=v.n;i++)
for(int j=;j<=v.n;j++)
(ans.v[j]+=1ll*v.v[i]*m.m[i][j])%=MOD;
return ans;
} Matrix operator* (const Matrix& a,const Matrix& b){
Matrix ans(a.n);
for(int i=;i<=a.n;i++)
for(int j=;j<=a.n;j++)
for(int k=;k<=a.n;k++)
(ans.m[i][j]+=1ll*a.m[i][k]*b.m[k][j])%=MOD;
return ans;
} int main(){
scanf("%d%d",&n,&m);
Vector v(*n);
Matrix mx(*n);
v.v[]=;
for(int i=;i<=n;i++){
mx.m[i+n][i]=;
mx.m[i][i+n]=;
for(int j=std::max(,i-);j<=std::min(n,i+);j++){
mx.m[i][j]=;
}
}
m-=;
while(m>){
if((m&)!=){
v=v*mx;
}
mx=mx*mx;
m>>=;
}
memset(mx.m,,sizeof(mx.m));
for(int i=;i<=n;i++){
for(int j=std::max(,i-);j<=std::min(n,i+);j++){
mx.m[i][j]=;
}
}
if((m&)==)
v=v*mx;
printf("%d\n",v.v[n]);
return ;
}

Backup

[BZOJ 4417][Shoi2013]超级跳马的更多相关文章

  1. 洛谷 P3990 [SHOI2013]超级跳马 解题报告

    P3990 [SHOI2013]超级跳马 题目描述 现有一个\(n\) 行 \(m\) 列的棋盘,一只马欲从棋盘的左上角跳到右下角.每一步它向右跳奇数列,且跳到本行或相邻行.跳越期间,马不能离开棋盘. ...

  2. [题解][SHOI2013]超级跳马 动态规划/递推式/矩阵快速幂优化

    这道题... 让我见识了纪中的强大 这道题是来纪中第二天(7.2)做的,这么晚写题解是因为 我去学矩阵乘法啦啦啦啦啦对矩阵乘法一窍不通的童鞋戳链接啦 层层递推会TLE,正解矩阵快速幂 首先题意就是给你 ...

  3. BZOJ 4417 Luogu P3990 [SHOI2013]超级跳马 (DP、矩阵乘法)

    题目链接: (bzoj) https://www.lydsy.com/JudgeOnline/problem.php?id=4417 (luogu)https://www.luogu.org/prob ...

  4. BZOJ4417: [Shoi2013]超级跳马

    Description 现有一个n行m列的棋盘,一只马欲从棋盘的左上角跳到右下角.每一步它向右跳奇数列,且跳到本行或相邻行.跳越期间,马不能离开棋盘.例如,当n = 3, m = 10时,下图是一种可 ...

  5. 【BZOJ4417】: [Shoi2013]超级跳马

    题目链接: 传送. 题解: 矩阵快速幂优化DP. 先考虑$nm^2$DP,设$f_{(i,j)}$表示从$1,1$到$i,j$的方案,显然这个方程和奇偶性有关,我们考虑某列的$i$同奇偶性的转移和奇偶 ...

  6. Luogu P3990 [SHOI2013]超级跳马

    这道题还是一道比较不可做的矩阵题 首先我们先YY一个递推的算法:令f[i][j]表示走到第i行第j列时的方案数,那么有以下转移: f[i][j]=f[i-1][j-2*k+1]+f[i+1][j-2* ...

  7. 【bzoj4417】[Shoi2013]超级跳马 矩阵乘法

    题目描述 现有一个n行m列的棋盘,一只马欲从棋盘的左上角跳到右下角.每一步它向右跳奇数列,且跳到本行或相邻行.跳越期间,马不能离开棋盘.例如,当n = 3, m = 10时,下图是一种可行的跳法.   ...

  8. P3990 [SHOI2013]超级跳马

    传送门 首先不难设\(f[i][j]\)表示跳到\((i,j)\)的方案数,那么不难得到如下转移 \[f[i][j]=\sum\limits_{k=1}^{\frac n2}f[i-2k+1][j-1 ...

  9. [SHOI2013]超级跳马

    题目描述 现有一个n 行m 列的棋盘,一只马欲从棋盘的左上角跳到右下角.每一步它向右跳奇数列,且跳到本行或相邻行.跳越期间,马不能离开棋盘.试求跳法种数mod 30011. 输入输出格式 输入格式: ...

随机推荐

  1. css(外部样式表)中各种选择器(定义属性时)的优先级

    今天在学css的时候遇到一个问题,用css的外部样式表改变一个<p>元素的颜色,死活就是改变不了,最后才发现是优先级的问题(我自己想当然成后面的优先级就高了,犯了经验主义错误). 先给大家 ...

  2. hdu2262 Where is the canteen

    Where is the canteen Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Ot ...

  3. template.process(root, out)的用法(shiro项目中来的九)

    Writer out = new BufferedWriter(new OutputStreamWriter(new FileOutputStream(file), "utf-8" ...

  4. jquery自带的方法

    5.1,$.trim $.trim("   Hello, chinaren_1123 & 摆渡浮桥!   "); //去掉前后空格后->Hello, chinaren ...

  5. PyTorch官方中文文档:torch.Tensor

    torch.Tensor torch.Tensor是一种包含单一数据类型元素的多维矩阵. Torch定义了七种CPU tensor类型和八种GPU tensor类型: Data tyoe CPU te ...

  6. Android集成百度地图详细步骤和错误问题

    先看要实现的效果 第一步, 下载SDK,基础配置,百度开发文档很详细,直接附上链接http://lbsyun.baidu.com/index.php?title=androidsdk/guide/cr ...

  7. 清橙A1212:剪枝

    题面 清橙 Sol 一种新的树上\(DP\)姿势 从左往右按链\(DP\) 做法: 维护两个栈\(S1\),\(S2\) \(S1\)存当前的链 \(S2\)存分叉点以下要改的链 \(Dfs\),弄一 ...

  8. Luogu3242:[HNOI2015]接水果

    题面 Luogu3242 Sol 考虑每个盘子怎样才能接到一个水果 分两种情况: 盘子的\(x, y\)在一条链上,那么水果的两点就要在这条链之外 不在的话,水果的两点就分别在盘子的两点的子树中 记录 ...

  9. [BZOJ1010] [HNOI2008] 玩具装箱toy (斜率优化)

    Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1... ...

  10. 百度统计&友盟统计

    一.百度统计 登录百度站长统计账号-->管理 --->代码获取-->复制代码,如 <script> var _hmt = _hmt || []; (function() ...