[BZOJ 4417][Shoi2013]超级跳马
4417: [Shoi2013]超级跳马
Time Limit: 10 Sec Memory Limit: 256 MB
Submit: 379 Solved: 230
[Submit][Status][Discuss]Description
现有一个n行m列的棋盘,一只马欲从棋盘的左上角跳到右下角。每一步它向右跳奇数列,且跳到本行或相邻行。跳越期间,马不能离开棋盘。例如,当n = 3, m = 10时,下图是一种可行的跳法。试求跳法种数mod 30011。Input
仅有一行,包含两个正整数n, m,表示棋盘的规模。Output
仅有一行,包含一个整数,即跳法种数mod 30011。Sample Input
3 5Sample Output
10HINT
对于100%的数据,1 ≤ n ≤ 50,2 ≤ m ≤ 10^9
题解
首先我们发现由于某个点的状态可以从与它所在列的编号的奇偶性不同的所有列转移, 所以这应该是一个前缀和.
而第 $i$ 列的前缀和可以从前一列转移, 但奇数列与偶数列所转移的位置并不同, 所以转移过程中需要记录两个参考向量. 这样的话转移过程中的向量维数就是 $2n$ , 我们就需要一个 $2n\times 2n$ 的矩阵了. 我的转移矩阵大概长这样:

其中左上部分用于统计答案, 左下部分把奇偶性相同的列也加和起来, 右上部分用于把上一列答案下推一列.
然后最后一轮的时候要把左下和右上部分置零(其实主要是左下部分置零, 因为奇偶性相同的列不能再加入答案了)
A掉之后整个人都赛艇了2333333
参考代码
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm> const int MOD=; int n,m; struct Matrix{
int n;
int m[][];
Matrix(int n=){
this->n=n;
memset(m,,sizeof(m));
}
}; struct Vector{
int n;
int v[];
Vector(int n=){
this->n=n;
memset(v,,sizeof(v));
}
}; Vector operator* (const Vector& v,const Matrix& m){
Vector ans(v.n);
for(int i=;i<=v.n;i++)
for(int j=;j<=v.n;j++)
(ans.v[j]+=1ll*v.v[i]*m.m[i][j])%=MOD;
return ans;
} Matrix operator* (const Matrix& a,const Matrix& b){
Matrix ans(a.n);
for(int i=;i<=a.n;i++)
for(int j=;j<=a.n;j++)
for(int k=;k<=a.n;k++)
(ans.m[i][j]+=1ll*a.m[i][k]*b.m[k][j])%=MOD;
return ans;
} int main(){
scanf("%d%d",&n,&m);
Vector v(*n);
Matrix mx(*n);
v.v[]=;
for(int i=;i<=n;i++){
mx.m[i+n][i]=;
mx.m[i][i+n]=;
for(int j=std::max(,i-);j<=std::min(n,i+);j++){
mx.m[i][j]=;
}
}
m-=;
while(m>){
if((m&)!=){
v=v*mx;
}
mx=mx*mx;
m>>=;
}
memset(mx.m,,sizeof(mx.m));
for(int i=;i<=n;i++){
for(int j=std::max(,i-);j<=std::min(n,i+);j++){
mx.m[i][j]=;
}
}
if((m&)==)
v=v*mx;
printf("%d\n",v.v[n]);
return ;
}
Backup

[BZOJ 4417][Shoi2013]超级跳马的更多相关文章
- 洛谷 P3990 [SHOI2013]超级跳马 解题报告
P3990 [SHOI2013]超级跳马 题目描述 现有一个\(n\) 行 \(m\) 列的棋盘,一只马欲从棋盘的左上角跳到右下角.每一步它向右跳奇数列,且跳到本行或相邻行.跳越期间,马不能离开棋盘. ...
- [题解][SHOI2013]超级跳马 动态规划/递推式/矩阵快速幂优化
这道题... 让我见识了纪中的强大 这道题是来纪中第二天(7.2)做的,这么晚写题解是因为 我去学矩阵乘法啦啦啦啦啦对矩阵乘法一窍不通的童鞋戳链接啦 层层递推会TLE,正解矩阵快速幂 首先题意就是给你 ...
- BZOJ 4417 Luogu P3990 [SHOI2013]超级跳马 (DP、矩阵乘法)
题目链接: (bzoj) https://www.lydsy.com/JudgeOnline/problem.php?id=4417 (luogu)https://www.luogu.org/prob ...
- BZOJ4417: [Shoi2013]超级跳马
Description 现有一个n行m列的棋盘,一只马欲从棋盘的左上角跳到右下角.每一步它向右跳奇数列,且跳到本行或相邻行.跳越期间,马不能离开棋盘.例如,当n = 3, m = 10时,下图是一种可 ...
- 【BZOJ4417】: [Shoi2013]超级跳马
题目链接: 传送. 题解: 矩阵快速幂优化DP. 先考虑$nm^2$DP,设$f_{(i,j)}$表示从$1,1$到$i,j$的方案,显然这个方程和奇偶性有关,我们考虑某列的$i$同奇偶性的转移和奇偶 ...
- Luogu P3990 [SHOI2013]超级跳马
这道题还是一道比较不可做的矩阵题 首先我们先YY一个递推的算法:令f[i][j]表示走到第i行第j列时的方案数,那么有以下转移: f[i][j]=f[i-1][j-2*k+1]+f[i+1][j-2* ...
- 【bzoj4417】[Shoi2013]超级跳马 矩阵乘法
题目描述 现有一个n行m列的棋盘,一只马欲从棋盘的左上角跳到右下角.每一步它向右跳奇数列,且跳到本行或相邻行.跳越期间,马不能离开棋盘.例如,当n = 3, m = 10时,下图是一种可行的跳法. ...
- P3990 [SHOI2013]超级跳马
传送门 首先不难设\(f[i][j]\)表示跳到\((i,j)\)的方案数,那么不难得到如下转移 \[f[i][j]=\sum\limits_{k=1}^{\frac n2}f[i-2k+1][j-1 ...
- [SHOI2013]超级跳马
题目描述 现有一个n 行m 列的棋盘,一只马欲从棋盘的左上角跳到右下角.每一步它向右跳奇数列,且跳到本行或相邻行.跳越期间,马不能离开棋盘.试求跳法种数mod 30011. 输入输出格式 输入格式: ...
随机推荐
- 在TextBox中敲击回车执行ASP.NET后台事件
1.在TextBox中敲击回车执行ASP.NET后台事件 0.说明 页面中有一个用于搜索的TextBox,希望能在输入内容后直接回车开始搜索,而不是手动去点击它旁边的搜索按钮 但因为该TextBo ...
- 在实训时做的项目出现的ajax json数据传送的问题
json数据在前后端数据交互的时候非常常见,但是大部分人对json都么有系统的学习过,所以就会出现一些很简单的问题却要非很大劲去解决. 在用json传递数据的时候属性必须用双引号括住,一般如果在进行字 ...
- [USACO13NOV]没有找零No Change [TPLY]
[USACO13NOV]没有找零No Change 题目链接 https://www.luogu.org/problemnew/show/3092 做题背景 FJ不是一个合格的消费者,不知法懂法用法, ...
- 原根求解算法 && NTT算法
原根求解算法: 获取一个数\(N\)的原根\(root\)的算法 #include<bits/stdc++.h> #define ll long long #define IL inlin ...
- HiHocoder1419 : 后缀数组四·重复旋律4&[SPOJ]REPEATS:Repeats
题面 Hihocoder Vjudge Sol 题目的提示说的也非常好 我对求\(LCP(P - L + len \% l, P + len \% L)\)做补充 \(len=LCP(P, P + L ...
- Liunx2:Liunx目录结构
Liunx目录图 进入根目录,使用ll命令看一下Liunx整个根目录图: 这里面所有的目录都是买完服务器之后最初始的目录,没有进过任何加工.Liunx以树的结构组织所有目录,用一张图表示一下Liunx ...
- tensorflow第一篇---numpy模块
写在前面: 自学tensorflow半个月,博友们给了我很多帮助,这是我第一篇原创的博文,我想把之前的知识梳理一遍,我会分享我一些在学习过程中遇到的问题,我目前只有这些......... 在介绍ten ...
- Django---第三方
第三方: 3.富文本编辑器:此处以tinymce为例 使用编辑器的显示效果为: 1.下载安装 在网站pypi网站搜索并下载"django-tinymce-2.4.0" 解压 tar ...
- spring之事务
1.编程式事务 2.声明式事务:aop
- java语言与jvm虚拟机简介
一.java语言 1.1 支持面向对象编程oop 强调支持,因为java同样可以面向过程编程. oop的三大特性是:封装.继承.多态. 封装主要针对成员变量而言,oop的思想要求成员变量均为私有,不应 ...
