使用Google Cloud Platform构建机器学习项目-宠物识别
宠物识别我们使用到了tensorflow object-detection API (https://github.com/tensorflow/models/tree/master/research/object_detection)
其中的Quick Start 2向我们介绍了这个项目(https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/running_pets.md)
安装建议直接下载一份tensorflow/models文件夹的全部内容
为了降低机器学习的时间成本和训练需要的金钱成本(毕竟不是所有人都会为机器学习购买昂贵的的显卡和内存),各家公司都推出了云机器学习的服务,如阿里云的机器学习PAI(华东2是免费的,但是我确实看不懂怎么用......)和GOOGLE的ML Engine等,这里我们使用到了Google的ML Engine,试用Google Cloud Platform(以下简称GCP)需要Visa或者Master Card的认证,认证完成可以获得300美元的试用机会,可在谷歌云平台的所有产品中使用。这里过验证我申请了一张建设银行的e付卡(Visa版)成功通过了验证,下面开始正式的ML Engine使用(详细的过程可以跟随running_pets.md中的步骤进行):
1.创建GCP项目 这里我创建了名为My First Project的项目
2.安装Cloud SDK,这里我选择安装了Windows版并全选了所有选项,之后使用gcloud auth login在浏览器中登录谷歌账号或使用gcloud init完成初始化,便可以在console中使用google SDK
不过在设置中我遇到了设置代理错误的问题,提示
Network diagnostic detects and fixes local network connection issues.
Checking network connection...failed.
ERROR: gcloud crashed (TypeError): setproxy() takes at most 7 arguments (8 given) If you would like to report this issue, please run the following command:
gcloud feedback To check gcloud for common problems, please run the following command:
gcloud info --run-diagnostics
gcloud version
Google Cloud SDK 186.0.0
bq 2.0.28
core 2018.01.22
gsutil 4.28
查了下Stack Overflow ,发现是谷歌自己的问题.......解决方案是下载185版本(https://console.cloud.google.com/storage/browser/cloud-sdk-release?authuser=0&prefix=google-cloud-sdk-185)
这周的187版本中会修复本问题,程序要求Python2.7环境,所以先下了一个捆绑python的版本凑合用吧,需要手动配置环境变量才能在powershell中使用,我相信这应该不是问题。
(因为后面要配置本地环境,又换回了linux,安装过程大同小异,使用交互式的安装后再下载185版本安装即可)
3.启用机器学习API,在打开的网页中选择需要启用API的项目 点继续等待完成。
4.创建用于存储的Bucket,这里我创建了takefetter_pets_detector的Bucket,之后便可以向此Bucket上传文件,记住这个Bucket的名字,之后我们会使用多次。
或者是使用如下方法进行定义(类似win下使用set命令)
export YOUR_GCS_BUCKET=${takefetter_pets_detector}
5.接下来配置本地的环境过程(这里我一开始使用到了WSL Ubuntu进行配置,分区目录挂载在/mnt/下,更换国内源......然后发现居然连不上网,github上的issue里的解决方案用了也没用,又回到了机械硬盘安装的deepin上)
根据https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/installation.md的步骤安装所需的库和配置环境并测试
6.接下来在tensorflow/models/research/目录下执行
wget http://www.robots.ox.ac.uk/~vgg/data/pets/data/images.tar.gz
wget http://www.robots.ox.ac.uk/~vgg/data/pets/data/annotations.tar.gz
tar -xvf images.tar.gz
tar -xvf annotations.tar.gz
7.运行
python object_detection/dataset_tools/create_pet_tf_record.py \
--label_map_path=object_detection/data/pet_label_map.pbtxt \
--data_dir=`pwd` \
--output_dir=`pwd`
这里很容易遇到
Traceback (most recent call last):
File "object_detection/dataset_tools/create_pet_tf_record.py", line 41, in <module>
from object_detection.utils import dataset_util
ModuleNotFoundError: No module named 'object_detection'
原因是中间配置环境过程中其实输入了这么一步,但是重开shell之后便失效了
解决方法是输入 如下命令
Linux:
export PYTHONPATH=$PYTHONPATH:`pwd`:`pwd`/slim
Windows:
set PYTHONPATH=<PATH_TO_MODELS>;<PATH_TO_MODELS>\slim
再次执行python就好了,执行中可能会遇到一些warnings,直接忽略就行.
在research目录下可以得到以下两个文件,如图所示,在object_detection/data下会生成pb.txt文件

8.之后便是将文件上传到bucket中,不要忘记
export YOUR_GCS_BUCKET=${takefetter_pets_detector}
运行
|
1
2
3
|
gsutil cp pet_train.record gs://${YOUR_GCS_BUCKET}/data/pet_train.recordgsutil cp pet_val.record gs://${YOUR_GCS_BUCKET}/data/pet_val.recordgsutil cp object_detection/data/pet_label_map.pbtxt gs://${YOUR_GCS_BUCKET}/data/pet_label_map.pbtxt |
等了半天没有相应,所以我通过浏览器建了data文件夹把这三个文件传上去了.....200多k的上传和下载真的难受
9.从头开始培训最先进的物体探测器可能需要数天时间,即使使用多个GPU也是如此! 为了加速训练,我们将在不同的数据集(COCO)上训练一个对象检测器,并重新使用它的一些参数来初始化我们的新模型。
wget http://storage.googleapis.com/download.tensorflow.org/models/object_detection/faster_rcnn_resnet101_coco_11_06_2017.tar.gz
tar -xvf faster_rcnn_resnet101_coco_11_06_2017.tar.gz
gsutil cp faster_rcnn_resnet101_coco_11_06_2017/model.ckpt.* gs://${YOUR_GCS_BUCKET}/data/
下载tar文件并上传其中model.ckpt开头的三个文件到data目录下.
10.之后需将sample中的文件faster_rcnn_resnet101_pets.config文件中带有gs::///data/的部分全部替换为gs://${YOUR_GCS_BUCKET}/data/,如
gs://takefetter_pets_detector/data/
并上传
至此,我们的bucket/data目录下文件如图所示
接下来就可以训练数据集了
11.在research目录下使用
python setup.py sdist
(cd slim && python setup.py sdist)
打包tfslim和object detection API,之后运行

gcloud ml-engine jobs submit training `whoami`_object_detection_`date +%s` \
--runtime-version 1.4 \
--job-dir=gs://takefetter_pets_detector/train \
--packages dist/object_detection-0.1.tar.gz,slim/dist/slim-0.1.tar.gz \
--module-name object_detection.train \
--region us-central1 \
--config object_detection/samples/cloud/cloud.yml \
-- \
--train_dir=gs://takefetter_pets_detector/train \
--pipeline_config_path=gs://takefetter_pets_detector/data/faster_rcnn_resnet101_pets.config

开始训练,训练过程中会遇到日志中显示ImportError: No module named matplotlib.pyplot的错误,需要在research目录下生成的setup.py中的REQUIRED_PACKAGES中添加'matplotlib',(方法来自https://stackoverflow.com/questions/47196673/import-error-matplotlib-pyplot)但是又出现了其他的错误,最终在
https://github.com/tensorflow/models/issues/2739下找到了andersskog的方法,改了好多文件终于是跑起来了.
通过
tensorboard --logdir=gs://takefetter_pets_detector
启动tensorboard服务,可以打开127.0.0.1:6006查看相关的信息.
最终经过2个小时的训练..... tensorboard上并没有显示和例程中一样的结果...... 因此我决定先做自己的数据集吧,改天再做 毕竟Google ML Engine收费还是很贵的.......
确实不知道错在哪,欢迎在评论中指教。
使用Google Cloud Platform构建机器学习项目-宠物识别的更多相关文章
- 使用Gardener在Google Cloud Platform上创建Kubernetes集群
Gardener是一个开源项目,github地址: https://github.com/gardener/gardener/ 使用Gardener,我们可以在几分钟之内在GCP, AWS, Azur ...
- 如何取消 Google Cloud Platform 试用 & 关闭 GCP 帐号 & 删除信用卡 & 取消订阅
如何取消 Google Cloud Platform 试用 & 关闭 GCP 帐号 & 删除信用卡 & 取消订阅 关闭您的 Google Cloud Platform 帐号 s ...
- Google Cloud Platform 续
Google Cloud Platform 创建新实例 地区:australia-southeast1-a 机器类型:1个vCPU n1-standard-1 系统:Ubuntu 16.04 LTS ...
- 用Google Cloud Platform搭建***服务教程
之前FQ一直用的是***,天有不测风云,前几天发现ss服务挂了.更可怕的是ping都ping不通,多方打听,***中文社区已经炸开锅了,原因就是IP被封了.需要付费更换IP.然后到现在还是没有给我更换 ...
- 使用 TensorFlow 构建机器学习项目中文版·翻译完成
原文:Building Machine Learning Projects with TensorFlow 协议:CC BY-NC-SA 4.0 不要担心自己的形象,只关心如何实现目标.--<原 ...
- 使用SAP Cloud Platform Leonardo机器学习提取图片的特征向量
选中一个需要进行测试的Leonardo机器学习服务,点击Configure Environments: 因为我不想使用sandbox环境,所以我选择了eu10这个region: 维护clientid和 ...
- 使用SAP Cloud Platform Leonardo机器学习的测试控制台
选中一个需要进行测试的Leonardo机器学习服务,点击Configure Environments: 因为我不想使用sandbox环境,所以我选择了eu10这个region: 维护clientid和 ...
- 对Google cloud platform 做了点研究
Google也推出了云计算基础服务, 加上微软Azure,亚马逊AWS, 都齐活了. 下面是研究了一下对其的一个初步了解. 计算: Compute Engine IaaS平台,提供VM,操作灵 ...
- Google Cloud Platform
一个离我们很遥远,很遥远的公司.作为全球三大公有云厂商之一,在国内根本听不到他的声音.其实吧,听到了也没用,因为在国内没法用!AWS还在纠结的落地过程中挣扎,GCP基本上就当不存在吧. 抛开这些乌烟瘴 ...
随机推荐
- bzoj:1703: [Usaco2007 Mar]Ranking the Cows 奶牛排名
Description 农夫约翰有N(1≤N≤1000)头奶牛,每一头奶牛都有一个确定的独一无二的正整数产奶率.约翰想要让这些奶牛按产奶率从高到低排序. 约翰已经比较了M(1≤M≤100 ...
- [51nod1532]带可选字符的多字符串匹配
有一个文本串,它的长度为m (1 <= m <= 2000000),现在想找出其中所有的符合特定模式的子串位置. 符合特定模式是指,该子串的长度为n (1 <= n <= 50 ...
- linux下vi编辑某文件时,操作出现 错误提示: E325: ATTENTION 2, Found a swap file by the name ".p1.c.swp"
当我在linux下用vi打开p1.c文件时 root@iZ2zeeailqvwws5dcuivdbZ:~/1/01/指针# vi p1.c 会出现如下信息: E325: ATTENTION Found ...
- 转:C++与JAVA语言区别
转自:http://club.topsage.com/thread-265349-1-1.html Java并不仅仅是C++语言的一个变种,它们在某些本质问题上有根本的不同: (1)Java比C++程 ...
- Java技术分享:如何编写servlet程序
身为计算机专业的我,从接触java至今,已经有七年之久,从最开始的小白到现在的大白,这是一个漫长而曲折的历程. 大学刚接触Java这个学科时,一点儿都不理解java是要干嘛的,只知道学起来肯定不容易, ...
- HDU 1233 还是畅通工程(模板——克鲁斯卡尔算法)
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1233 题意描述: 输入n个城镇以及n*(n-1)/2条道路信息 计算并输出将所有城镇连通或者间接连通 ...
- 最小生成数之Kruskal算法
描述 随着小Hi拥有城市数目的增加,在之间所使用的Prim算法已经无法继续使用了--但是幸运的是,经过计算机的分析,小Hi已经筛选出了一些比较适合建造道路的路线,这个数量并没有特别的大. 所以问题变成 ...
- Java ASM介绍
一.什么是ASM 首先看下官方中的说明 ASM a very small and fast Java bytecode manipulation framework. ASM是一个JAVA字节码分析. ...
- myeclipse编码
window --->perferences
- 转-How to install an SSH Server in Windows Server 2008
window也可以通过ssh客户端连接,具体方式参考下面 1 How to install an SSH Server in Windows Server 2008 2 freeSSHd and fr ...