大致架构



* 每个应用实例部署一个日志agent

* agent实时将日志发送到kafka

* storm实时计算日志

* storm计算结果保存到hbase

storm消费kafka

  • 创建实时计算项目并引入storm和kafka相关的依赖
<dependency>
    <groupId>org.apache.storm</groupId>
    <artifactId>storm-core</artifactId>
    <version>1.0.2</version>
    <scope>provided</scope>
</dependency>
<dependency>
    <groupId>org.apache.storm</groupId>
    <artifactId>storm-kafka</artifactId>
    <version>1.0.2</version>
</dependency>
<dependency>
    <groupId>org.apache.kafka</groupId>
    <artifactId>kafka_2.10</artifactId>
    <version>0.8.2.0</version>
</dependency>
  • 创建消费kafka的spout,直接用storm提供的KafkaSpout即可。
  • 创建处理从kafka读取数据的Bolt,JsonBolt负责解析kafka读取到的json并发送到下个Bolt进一步处理(下一步处理的Bolt不再写,只要继承BaseRichBolt就可以对tuple处理)。
public class JsonBolt extends BaseRichBolt {
    private static final Logger LOG = LoggerFactory
            .getLogger(JsonBolt.class);

    private Fields fields;
    private OutputCollector collector;

    public JsonBolt() {
        this.fields = new Fields("hostIp", "instanceName", "className",
                "methodName", "createTime", "callTime", "errorCode");
    }

    @Override
    public void prepare(Map stormConf, TopologyContext context,
            OutputCollector collector) {
        this.collector = collector;
    }

    @Override
    public void execute(Tuple tuple) {
        String spanDataJson = tuple.getString(0);
        LOG.info("source data:{}", spanDataJson);
        Map<String, Object> map = (Map<String, Object>) JSONValue
                .parse(spanDataJson);
        Values values = new Values();
        for (int i = 0, size = this.fields.size(); i < size; i++) {
            values.add(map.get(this.fields.get(i)));
        }
        this.collector.emit(tuple, values);
        this.collector.ack(tuple);
    }

    @Override
    public void declareOutputFields(OutputFieldsDeclarer declarer) {
        declarer.declare(this.fields);
    }
}
  • 创建拓扑MyTopology,先配置好KafkaSpout的配置SpoutConfig,其中zk的地址端口和根节点,将id为KAFKA_SPOUT_ID的spout通过shuffleGrouping关联到jsonBolt对象。
public class MyTopology {

    private static final String TOPOLOGY_NAME = "SPAN-DATA-TOPOLOGY";
    private static final String KAFKA_SPOUT_ID = "kafka-stream";
    private static final String JsonProject_BOLT_ID = "jsonProject-bolt";

    public static void main(String[] args) throws Exception {
        String zks = "132.122.252.51:2181";
        String topic = "span-data-topic";
        String zkRoot = "/kafka-storm";
        BrokerHosts brokerHosts = new ZkHosts(zks);
        SpoutConfig spoutConf = new SpoutConfig(brokerHosts, topic, zkRoot,
                KAFKA_SPOUT_ID);
        spoutConf.scheme = new SchemeAsMultiScheme(new StringScheme());
        spoutConf.zkServers = Arrays.asList(new String[] { "132.122.252.51" });
        spoutConf.zkPort = 2181;
        JsonBolt jsonBolt = new JsonBolt();

        TopologyBuilder builder = new TopologyBuilder();
        builder.setSpout(KAFKA_SPOUT_ID, new KafkaSpout(spoutConf));
        builder.setBolt(JsonProject_BOLT_ID, jsonBolt).shuffleGrouping(
                KAFKA_SPOUT_ID);

        Config config = new Config();
        config.setNumWorkers(1);
        if (args.length == 0) {
            LocalCluster cluster = new LocalCluster();
            cluster.submitTopology(TOPOLOGY_NAME, config,
                    builder.createTopology());
            Utils.waitForSeconds(100);
            cluster.killTopology(TOPOLOGY_NAME);
            cluster.shutdown();
        } else {
            StormSubmitter.submitTopology(args[0], config,
                    builder.createTopology());
        }
    }
}
  • 本地测试时直接不带运行参数运行即可,放到集群是需带拓扑名称作为参数。
  • 另外需要注意的是:KafkaSpout默认从上次运行停止时的位置开始继续消费,即不会从头开始消费一遍,因为KafkaSpout默认每2秒钟会提交一次kafka的offset位置到zk上,如果要每次运行都从头开始消费可以通过配置实现。

storm消费kafka实现实时计算的更多相关文章

  1. Sprak2.0 Streaming消费Kafka数据实时计算及运算结果保存数据库代码示例

    package com.gm.hive.SparkHive; import java.util.Arrays; import java.util.Collection; import java.uti ...

  2. 基于Kafka的实时计算引擎如何选择?Flink or Spark?

    1.前言 目前实时计算的业务场景越来越多,实时计算引擎技术及生态也越来越成熟.以Flink和Spark为首的实时计算引擎,成为实时计算场景的重点考虑对象.那么,今天就来聊一聊基于Kafka的实时计算引 ...

  3. 基于Kafka的实时计算引擎如何选择?(转载)

    1.前言 目前实时计算的业务场景越来越多,实时计算引擎技术及生态也越来越成熟.以Flink和Spark为首的实时计算引擎,成为实时计算场景的重点考虑对象.那么,今天就来聊一聊基于Kafka的实时计算引 ...

  4. Storm消费Kafka提交集群运行

    1.创建拓扑,配置KafkaSpout.Bolt KafkaTopologyBasic.java: package org.mort.storm.kafka; import org.apache.ka ...

  5. Storm消费Kafka值得注意的坑

    问题描述: kafka是之前早就搭建好的,新建的storm集群要消费kafka的主题,由于kafka中已经记录了很多消息,storm消费时从最开始消费问题解决: 下面是摘自官网的一段话:How Kaf ...

  6. Storm集成Kafka应用的开发

    我们知道storm的作用主要是进行流式计算,对于源源不断的均匀数据流流入处理是非常有效的,而现实生活中大部分场景并不是均匀的数据流,而是时而多时而少的数据流入,这种情况下显然用批量处理是不合适的,如果 ...

  7. Flink消费Kafka数据并把实时计算的结果导入到Redis

    1. 完成的场景 在很多大数据场景下,要求数据形成数据流的形式进行计算和存储.上篇博客介绍了Flink消费Kafka数据实现Wordcount计算,这篇博客需要完成的是将实时计算的结果写到redis. ...

  8. Storm大数据实时计算

    大数据也是构建各类系统的时候一种全新的思维,以及架构理念,比如Storm,Hive,Spark,ZooKeeper,HBase,Elasticsearch,等等 storm,在做热数据这块,如果要做复 ...

  9. 《storm实战-构建大数据实时计算读书笔记》

    自己的思考: 1.接收任务到任务的分发和协调   nimbus.supervisor.zookeeper 2.高容错性                            各个组件都是无状态的,状态 ...

随机推荐

  1. [HNOI 2002]彩票

    Description 某地发行一套彩票.彩票上写有1到M这M个自然数.彩民可以在这M个数中任意选取N个不同的数打圈.每个彩民只能买一张彩票,不同的彩民的彩票上的选择不同. 每次抽奖将抽出两个自然数X ...

  2. NOIWC2018 游记

    day1 上午是自习,做了一些杂题,看了一下ppt,中午准备了一下行李,就出发了,提前了一个小时,谁知道被坑爹导航弄得居然到晚了一点 当走到这里的时候我愣住了 纠结了一分钟,直到有个boy走了进去,我 ...

  3. HDU - 3037:Saving Beans

    #include<cstdio> #include<cstdlib> #include<algorithm> #include<cstring> #in ...

  4. ●洛谷P3242 [HNOI2015]接水果

    题链: https://www.luogu.org/problemnew/show/P3242 题解: 整体二分,扫描线+树状数组. 详细的题解:http://blog.csdn.net/thy_as ...

  5. Educational Codeforces Round 19

    A. k-Factorization 题目大意:给一个数n,求k个大于1的数,乘积为n.(n<=100,000,k<=20) 思路:分解质因数呗 #include<cstdio> ...

  6. 【NOIP 2017】逛公园

    Description 策策同学特别喜欢逛公园.公园可以看成一张N个点M条边构成的有向图,且没有 自环和重边.其中1号点是公园的入口,N号点是公园的出口,每条边有一个非负权值, 代表策策经过这条边所要 ...

  7. [BZOJ]2594 水管局长数据加强版(Wc2006)

    失踪人口回归. LCT一直是小C的弱项,特别是这种维护链的信息的,写挂了就会调代码调到心态爆炸. 不过还好这一次的模板练习没有出现太多的意外. Description SC省MY市有着庞大的地下水管网 ...

  8. bzoj2005 NOI2010 方案统计

    2005: [Noi2010]能量采集 Time Limit: 10 Sec  Memory Limit: 552 MBSubmit: 4387  Solved: 2619[Submit][Statu ...

  9. 基于 HTML5 的 WebGL 3D 智能楼宇监控系统

    前言 智能监控的领域已经涉及到了各大领域,工控.电信.电力.轨道交通.航天航空等等,为了减少人员的消耗,监控系统必不可少.之前我写过一篇 2D 的智能地铁监控系统广受好评,突然觉得,既然 2D 的这么 ...

  10. 第二周个人作业WordCount

    1.Github地址 https://github.com/JingzheWu/WordCount 2.PSP表格 PSP2.1 PSP阶段 预估耗时 (分钟) 实际耗时 (分钟) Planning ...