hdu 5514 Frogs(容斥)
Frogs
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 1315 Accepted Submission(s): 443
The stones are numbered from 0 to m−1 and the frogs are numbered from 1 to n. The i-th frog can jump over exactly ai stones in a single step, which means from stone j mod m to stone (j+ai) mod m (since all stones lie on a circle).
All frogs start their jump at stone 0, then each of them can jump as many steps as he wants. A frog will occupy a stone when he reach it, and he will keep jumping to occupy as much stones as possible. A stone is still considered ``occupied" after a frog jumped away.
They would like to know which stones can be occupied by at least one of them. Since there may be too many stones, the frogs only want to know the sum of those stones' identifiers.
meaning the total number of test cases.
For each test case, the first line contains two positive integer n and m - the number of frogs and stones respectively (1≤n≤104, 1≤m≤109).
The second line contains n integers a1,a2,⋯,an, where ai denotes step length of the i-th frog (1≤ai≤109).
/*
hdu 5514 Frogs(容斥) problem:
有n只青蛙和围成一个圈的m个石头. 每只青蛙可以跳a[i]步. 求所有被占领过的石头的编号和 solve:
可以发现青蛙会经过 GCD(a[i],m)的倍数的点.但是有很多重复跳过的石头. 所以会想到容斥.
如果暴力肯定要GG. 可以发现青蛙只会经过gcd(x,m)的点,也就是m的因子.
所以可以把枚举m改成枚举m的因子. 然后利用容斥减去重复的就行. hhh-2016-08-30 16:30:55
*/
#pragma comment(linker,"/STACK:124000000,124000000")
#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <vector>
#include <math.h>
#include <queue>
#include <set>
#include <map>
#define lson i<<1
#define rson i<<1|1
#define ll long long
#define clr(a,b) memset(a,b,sizeof(a))
#define scanfi(a) scanf("%d",&a)
#define scanfs(a) scanf("%s",a)
#define scanfl(a) scanf("%I64d",&a)
#define key_val ch[ch[root][1]][0]
#define inf 1e9
using namespace std;
const ll mod = 1e9+7;
const int maxn = 20005;
int fac[maxn];
int fcnt;
int vis[maxn],hac[maxn]; int gcd(int a,int b)
{
return b ? gcd(b,a%b) : a;
} int main()
{
int T,n,m;
// freopen("in.txt","r",stdin);
scanfi(T);
int cas = 1;
while(T--)
{
scanfi(n),scanfi(m);
fcnt = 0;
for(int i = 1;i*i <= m;i++)
{
if(m % i == 0)
{
fac[fcnt++] = i;
if(i *i != m)
fac[fcnt ++ ] = m/i;
}
}
sort(fac,fac+fcnt);
// for(int i = 0;i < fcnt;i++)
// cout << fac[i] <<" ";
// cout <<endl;
int x;
clr(vis,0),clr(hac,0);
for(int i = 1;i <= n;i++) //处理会经过哪些因子
{
scanfi(x);
x = gcd(x,m);
for(int j = 0;j < fcnt;j++)
{
if(fac[j] % x== 0)
vis[j] = 1;
}
}
vis[fcnt-1] = 0;
ll ans = 0;
for(int i = 0;i < fcnt;i++)
{
if(vis[i] != hac[i])
{
int t = (m-1)/fac[i];
ans += (ll)t*(t+1)/2 * fac[i] * (vis[i] - hac[i]); //容斥原理. vis应该计算次数,hac已经计算次数
t = (vis[i] - hac[i]);
for(int j = 0;j < fcnt;j++)
{
if(fac[j] % fac[i] == 0)
hac[j] += t;
}
}
}
printf("Case #%d: %I64d\n",cas++,ans);
}
return 0;
}
hdu 5514 Frogs(容斥)的更多相关文章
- HDU 5514 Frogs 容斥定理
Frogs Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=5514 De ...
- hdu 5514 Frogs 容斥思想+gcd 银牌题
Frogs Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submi ...
- ACM-ICPC 2015 沈阳赛区现场赛 F. Frogs && HDU 5514(容斥)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5514 题意:有m个石子围成一圈, 有n只青蛙从跳石子, 都从0号石子开始, 每只能越过xi个石子.问所 ...
- HDU 5213 分块 容斥
给出n个数,给出m个询问,询问 区间[l,r] [u,v],在两个区间内分别取一个数,两个的和为k的对数数量. $k<=2*N$,$n <= 30000$ 发现可以容斥简化一个询问.一个询 ...
- HDU 2588 思维 容斥
求满足$1<=X<=N ,(X,N)>=M$的个数,其中$N, M (2<=N<=1000000000, 1<=M<=N)$. 首先,假定$(x, n)=m$ ...
- HDU 5514 Frogs
Frogs Time Limit: 1000ms Memory Limit: 65536KB This problem will be judged on HDU. Original ID: 5514 ...
- HDU 5514 Frogs (容斥原理)
题目链接 : http://acm.hdu.edu.cn/showproblem.php?pid=5514 题意 : 有m个石子围成一圈, 有n只青蛙从跳石子, 都从0号石子开始, 每只能越过a[i] ...
- HDU 5514 Frogs(容斥原理)
[题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=5514 [题目大意] m个石子围成一圈,标号为0~m-1,现在有n只青蛙,每只每次跳a[i]个石子, ...
- HDU 1695 GCD 容斥
GCD 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=1695 Description Given 5 integers: a, b, c, d, k ...
随机推荐
- C程序设计-----第1次作业
一. PTA作业. 在完成PTA作业的时候我没有认真读题.每次都是提交完整代码 6-1(1) #include <stdio.h> //P++等价于(p)++还是等价于*(p++)? ...
- 《高级软件测试》web测试实践--12月30日记录
考完数学,我们正式开始web测试实践的作业,今天,我们主要进行了方案的选择和人员的分工.任务计划和安排如上图所示. 任务进展:完成题目选择和人员分工: 遇到问题:暂无: 下一步任务:完成软件评测.用户 ...
- nyoj n-1位数
n-1位数 时间限制:3000 ms | 内存限制:65535 KB 难度:1 描述 已知w是一个大于10但不大于1000000的无符号整数,若w是n(n≥2)位的整数,则求出w的后n-1位的 ...
- python 常用算法学习(2)
一,算法定义 算法(Algorithm)是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制.也就是说,能够对一定规范的输入,在有限时间内获得所要求 ...
- 根据抽象工厂实现的DBHelpers类
public abstract class DBHelper { public static SqlConnection conn = new SqlConnection("server=l ...
- LeetCode & Q20-Valid Parentheses-Easy
Stack String Description: Given a string containing just the characters '(', ')', '{', '}', '[' and ...
- 容器化的 DevOps 工作流
对于 devops 来说,容器技术绝对是我们笑傲江湖的法宝.本文通过一个小 demo 来介绍如何使用容器技术来改进我们的 devops 工作流. devops 的日常工作中难免会有一些繁琐的重复性劳动 ...
- gogs详细配置
sudo apt-get update sudo apt-get upgrade sudo adduser git //创建用户 密码 ******* su git//切换到git用户 cd ~ ...
- 新概念英语(1-135)The latest report
Lesson 135 The latest report 最新消息 Listen to the tape then answer this question. Is Karen Marsh going ...
- Linux实战案例(7)安装jdk
一.文件准备 1.1 文件名称 jdk-8u121-linux-x64.tar.gz 1.2 下载地址 http://www.oracle.com/technetwork/java/javase/do ...