题链:

http://codeforces.com/problemset/problem/280/D

题解:

神题,巨恶心。
(把原来的那个dp题升级为:序列带修 + 多次询问区间[l,r]内取不超过k段的不重叠子串,使得其和最大)。
按费用流的思路来看,建图方法如下:

每个点拆成两个点 i , i' ,建立超源 S和超汇 T
i -> i' : (1,a[i])
S -> i  : (1,0)
i'-> T  : (1,0)
i'-> i+1: (1,0)
那么对于某段区间,按照spfa最长路费用流去一条路一条路增广,
直到某个时候增广数==k或者增广路的费用为负数就停止。

分析其增广方式,不难发现一个重要特点(可以自己简单伪证一下哈):
每次找到增广路都是连续的一段,即对应着序列区间上和最大的连续的一段。
接下来增广操作,就会取出这一段的权值和,并把这一段的所有数全部 * -1。(就是增广后的反向边的花费)

所以就用线段树维护区间最大子段和以及最小子段和,
并且要支持单点修改和区间 * -1操作。
每次就取出[l,r]区间内的最大的子段,并把对应的子段全部 * -1,
如果取得次数==k或者最大的子段和为负数就停止。

。。。这个线段树不是一般的烦。

代码:

#include<cstdio>
#include<cstring>
#include<iostream>
#define MAXN 100005
#define INF 0x3f3f3f3f
using namespace std;
int a[MAXN];
struct data{
int sval,lval,rval,sum,sl,sr,lr,rl;
void init(bool type){
if(type) lval=rval=sval=-INF;
else lval=rval=sval=+INF;
}
void reverse(){
sval*=-1; lval*=-1; rval*=-1; sum*=-1;
}
void update(const data &l,const data &r,bool type){
sum=l.sum+r.sum;
if(type)
lval=max(l.lval,l.sum+r.lval), rval=max(r.rval,r.sum+l.rval),
sval=max(max(l.sval,r.sval),l.rval+r.lval);
else
lval=min(l.lval,l.sum+r.lval), rval=min(r.rval,r.sum+l.rval),
sval=min(min(l.sval,r.sval),l.rval+r.lval); if(l.lval==lval) lr=l.lr; else lr=r.lr; if(r.rval==rval) rl=r.rl; else rl=l.rl; if(l.sval==sval) sl=l.sl,sr=l.sr;
else if(r.sval==sval) sl=r.sl,sr=r.sr;
else sl=l.rl,sr=r.lr;
}
};
struct info{
data maxi,mini;
void init(){
maxi.init(1);
mini.init(0);
}
};
struct SGT{
#define ls lson[u]
#define rs rson[u]
bool lazy[MAXN<<1];
int lson[MAXN<<1],rson[MAXN<<1],rt,sz;
info node[MAXN<<1];
void init(){
rt=sz=0;
memset(lazy,0,sizeof(lazy));
memset(lson,0,sizeof(lson));
memset(rson,0,sizeof(rson));
for(int i=0;i<(MAXN<<1);i++)
node[i].init();
}
void pushup(info &now,const info &l,const info &r){
now.maxi.update(l.maxi,r.maxi,1);//___________________维护最大连续和_1__
now.mini.update(l.mini,r.mini,0);//___________________维护最小连续和_0__
}
void pushdown(int u){
node[ls].maxi.reverse(); node[ls].mini.reverse();
node[rs].maxi.reverse(); node[rs].mini.reverse();
swap(node[ls].maxi,node[ls].mini);
swap(node[rs].maxi,node[rs].mini);
lazy[u]^=1; lazy[ls]^=1; lazy[rs]^=1;
}
void build(int &u,int l,int r){
u=++sz;
if(l==r) {
node[u].maxi=(data){a[l],a[l],a[l],a[l],l,r,r,l};
node[u].mini=(data){a[l],a[l],a[l],a[l],l,r,r,l};
return;
}
int mid=(l+r)>>1;
build(ls,l,mid);
build(rs,mid+1,r);
pushup(node[u],node[ls],node[rs]);
}
void modify(int u,int l,int r,int p){
if(l==r){
node[u].maxi=(data){a[l],a[l],a[l],a[l],l,r,r,l};
node[u].mini=(data){a[l],a[l],a[l],a[l],l,r,r,l};
return;
}
if(lazy[u]) pushdown(u);
int mid=(l+r)>>1;
if(p<=mid) modify(ls,l,mid,p);
else modify(rs,mid+1,r,p);
pushup(node[u],node[ls],node[rs]);
}
void modify(int u,int l,int r,int al,int ar){
if(al<=l&&r<=ar){
node[u].maxi.reverse(); node[u].mini.reverse();
swap(node[u].maxi,node[u].mini);
lazy[u]^=1; return;
}
if(lazy[u]) pushdown(u);
int mid=(l+r)>>1;
if(al<=mid) modify(ls,l,mid,al,ar);
if(mid<ar) modify(rs,mid+1,r,al,ar);
pushup(node[u],node[ls],node[rs]);
}
info query(int u,int l,int r,int al,int ar){
if(al<=l&&r<=ar) return node[u];
info now,lnode,rnode;
now.init(); lnode.init(); rnode.init();
if(lazy[u]) pushdown(u);
int mid=(l+r)>>1;
if(al<=mid) lnode=query(ls,l,mid,al,ar);
if(mid<ar) rnode=query(rs,mid+1,r,al,ar); if(mid<al) now=rnode;
else if(ar<=mid) now=lnode;
else pushup(now,lnode,rnode);
return now;
}
#undef ls
#undef rs
}T1;
int N,M,ans;
void dfs(int k,int l,int r){
info now=T1.query(T1.rt,1,N,l,r);
if(now.maxi.sval<=0) return;
ans+=now.maxi.sval;
T1.modify(T1.rt,1,N,now.maxi.sl,now.maxi.sr);
if(k-1)dfs(k-1,l,r);
T1.modify(T1.rt,1,N,now.maxi.sl,now.maxi.sr);
}
int main()
{
//freopen("280D.in","r",stdin);
scanf("%d",&N); T1.init();
for(int i=1;i<=N;i++) scanf("%d",&a[i]);
T1.build(T1.rt,1,N);
scanf("%d",&M);
for(int i=1,c,l,r,k;i<=M;i++){
scanf("%d",&c);
if(!c){
scanf("%d",&k); scanf("%d",&a[k]);
T1.modify(T1.rt,1,N,k);
}
else{
scanf("%d%d%d",&l,&r,&k);
ans=0;
dfs(k,l,r);
printf("%d\n",ans);
}
}
return 0;
}

●CodeForces 280D k-Maximum Subsequence Sum的更多相关文章

  1. 中国大学MOOC-陈越、何钦铭-数据结构-2015秋 01-复杂度2 Maximum Subsequence Sum (25分)

    01-复杂度2 Maximum Subsequence Sum   (25分) Given a sequence of K integers { N​1​​,N​2​​, ..., N​K​​ }. ...

  2. PAT1007:Maximum Subsequence Sum

    1007. Maximum Subsequence Sum (25) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Y ...

  3. PTA (Advanced Level) 1007 Maximum Subsequence Sum

    Maximum Subsequence Sum Given a sequence of K integers { N​1​​, N​2​​, ..., N​K​​ }. A continuous su ...

  4. 【DP-最大子串和】PAT1007. Maximum Subsequence Sum

    1007. Maximum Subsequence Sum (25) 时间限制 400 ms 内存限制 32000 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Y ...

  5. PAT Maximum Subsequence Sum[最大子序列和,简单dp]

    1007 Maximum Subsequence Sum (25)(25 分) Given a sequence of K integers { N~1~, N~2~, ..., N~K~ }. A ...

  6. PAT甲 1007. Maximum Subsequence Sum (25) 2016-09-09 22:56 41人阅读 评论(0) 收藏

    1007. Maximum Subsequence Sum (25) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Y ...

  7. PAT 甲级 1007 Maximum Subsequence Sum (25)(25 分)(0不是负数,水题)

    1007 Maximum Subsequence Sum (25)(25 分) Given a sequence of K integers { N~1~, N~2~, ..., N~K~ }. A ...

  8. PAT 1007 Maximum Subsequence Sum(最长子段和)

    1007. Maximum Subsequence Sum (25) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Y ...

  9. pat1007. Maximum Subsequence Sum (25)

    1007. Maximum Subsequence Sum (25) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Y ...

  10. PTA 01-复杂度2 Maximum Subsequence Sum (25分)

    题目地址 https://pta.patest.cn/pta/test/16/exam/4/question/663 5-1 Maximum Subsequence Sum   (25分) Given ...

随机推荐

  1. GPUImage实战问题解决

    在项目中遇到了使用完GPUImage以后,内存不释放的问题,翻阅官方API,找到了解决方法: deinit{ GPUImageContext.sharedImageProcessingContext( ...

  2. xShell终端下中文乱码问题

    今天,可能是因为不小心中途打断了xShell更新,结果打开xShell发现里面的中文全成了乱码.于是去网上查了一下原因.  更新xshell(xshell5)以及其他终端中文乱码的原因无非有三种 (1 ...

  3. 微信小程序轮播图

    swiper标签 <!--index.wxml--> <swiper class="swiper" indicator-dots="true" ...

  4. Linux的打印rpm包的详细信息的shell脚本

    #!/bin/bash # list a content summary of a number of RPM packages # USAGE: showrpm rpmfile1 rpmfile2 ...

  5. CentOS 7 GUI图形界面安装

    在此之前先获取root权限,进行以下命令: 1. 在命令行下输入下面的命令来安装Gnome包: yum groupinstall "GNOME Desktop" "Gra ...

  6. Python-进程与线程理论基础-Day10

    进程与线程理论基础 1.背景知识 理论基础: 一 操作系统的作用: 1:隐藏丑陋复杂的硬件接口,提供良好的抽象接口 2:管理.调度进程,并且将多个进程对硬件的竞争变得有序 二 多道技术: 1.产生背景 ...

  7. cv2.cornerHarris()详解 python+OpenCV 中的 Harris 角点检测

    参考文献----------OpenCV-Python-Toturial-中文版.pdf 参考博客----------http://www.bubuko.com/infodetail-2498014. ...

  8. RxJava系列1(简介)

    RxJava系列1(简介) RxJava系列2(基本概念及使用介绍) RxJava系列3(转换操作符) RxJava系列4(过滤操作符) RxJava系列5(组合操作符) RxJava系列6(从微观角 ...

  9. 【Java】0X003 面向对象

    一. 什么是面向对象 都说Java是一门面向对象的语言,但什么对象?什么又是面向对象?以下都是我学到的知识和一点自己的理解. 对象是指包含属性和行为的主体. 比如,人有性别.血型.单眼皮或双眼皮等的特 ...

  10. 数据结构 Python实现

    参考博客:浅谈算法和数据结构: 一 栈和队列   Python数据结构--栈.队列的实现(一)    Python数据结构--栈.队列的实现(二)    Python数据结构--链表的实现 数据结构 ...