codeforces 85D D. Sum of Medians 线段树
3 seconds
256 megabytes
standard input
standard output
In one well-known algorithm of finding the k-th order statistics we should divide all elements into groups of five consecutive elements and find the median of each five. A median is called the middle element of a sorted array (it's the third largest element for a group of five). To increase the algorithm's performance speed on a modern video card, you should be able to find a sum of medians in each five of the array.
A sum of medians of a sorted k-element set S = {a1, a2, ..., ak}, where a1 < a2 < a3 < ... < ak, will be understood by as
The operator stands for taking the remainder, that is
stands for the remainder of dividing x by y.
To organize exercise testing quickly calculating the sum of medians for a changing set was needed.
The first line contains number n (1 ≤ n ≤ 105), the number of operations performed.
Then each of n lines contains the description of one of the three operations:
- add x — add the element x to the set;
- del x — delete the element x from the set;
- sum — find the sum of medians of the set.
For any add x operation it is true that the element x is not included in the set directly before the operation.
For any del x operation it is true that the element x is included in the set directly before the operation.
All the numbers in the input are positive integers, not exceeding 109.
For each operation sum print on the single line the sum of medians of the current set. If the set is empty, print 0.
Please, do not use the %lld specificator to read or write 64-bit integers in C++. It is preferred to use the cin, cout streams (also you may use the %I64d specificator).
6
add 4
add 5
add 1
add 2
add 3
sum
3
14
add 1
add 7
add 2
add 5
sum
add 6
add 8
add 9
add 3
add 4
add 10
sum
del 1
sum
5
11
13
#include<bits/stdc++.h>
using namespace std;
#define ll unsigned long long
#define pi (4*atan(1.0))
#define eps 1e-14
#define bug(x) cout<<"bug"<<x<<endl;
const int N=2e5+,M=1e6+,inf=1e9+;
const ll INF=1e18+,mod=;
int n,tree[N];
int lowbit(int x)
{
return x&-x;
}
void update(int x,int c)
{
while(x<1e5+)
{
tree[x]+=c;
x+=lowbit(x);
}
}
int getsum(int x)
{
int sum=;
while(x>)
{
sum+=tree[x];
x-=lowbit(x);
}
return sum;
}
struct is
{
int lazy;
ll ans[];
}a[N<<];
ll temp[];
void pushup(int pos)
{
for(int i=;i<;i++)
a[pos].ans[i]=a[pos<<].ans[i]+a[pos<<|].ans[i];
}
void change(int pos,int x)
{
x=(x%+)%;
int ji=;
for(int i=;i<;i++)
temp[i]=a[pos].ans[i];
for(int i=x;i<;i++)
a[pos].ans[i]=temp[ji++];
for(int i=;i<x;i++)
a[pos].ans[i]=temp[ji++];
}
void pushdown(int pos)
{
if(a[pos].lazy)
{
a[pos<<].lazy+=a[pos].lazy;
a[pos<<|].lazy+=a[pos].lazy;
change(pos<<,a[pos].lazy);
change(pos<<|,a[pos].lazy);
a[pos].lazy=;
}
}
void build(int l,int r,int pos)
{
a[pos].lazy=;
memset(a[pos].ans,,sizeof(a[pos].ans));
if(l==r)return;
int mid=(l+r)>>;
build(l,mid,pos<<);
build(mid+,r,pos<<|);
}
void update(int L,int R,int c,int l,int r,int pos)
{
if(L<=l&&r<=R)
{
a[pos].lazy+=c;
change(pos,c);
return;
}
pushdown(pos);
int mid=(l+r)>>;
if(L<=mid)
update(L,R,c,l,mid,pos<<);
if(R>mid)
update(L,R,c,mid+,r,pos<<|);
pushup(pos);
}
void point(int p,int k,int c,int l,int r,int pos)
{
if(l==r)
{
a[pos].ans[k]+=c;
return;
}
pushdown(pos);
int mid=(l+r)>>;
if(p<=mid)
point(p,k,c,l,mid,pos<<);
else
point(p,k,c,mid+,r,pos<<|);
pushup(pos);
}
char str[N][];
int b[N];
int s[N],cnt;
int getpos(int x)
{
int pos=lower_bound(s+,s++cnt,x)-s;
return pos;
}
int main()
{
int n;
scanf("%d",&n);
for(int i=;i<=n;i++)
{
scanf("%s",str[i]);
if(str[i][]=='a'||str[i][]=='d')
{
scanf("%d",&b[i]);
s[++cnt]=b[i];
}
}
sort(s+,s++cnt);
cnt=max(,cnt);
build(,cnt,);
for(int i=;i<=n;i++)
{
//cout<<str[i]<<endl;
if(str[i][]=='a')
{
int x=getpos(b[i]);
int now=getsum(x-);
now%=;
//cout<<x<<" "<<now<<" "<<b[i]<<endl;
update(x,);
update(x+,cnt,,,cnt,);
point(x,now,b[i],,cnt,);
}
else if(str[i][]=='d')
{
int x=getpos(b[i]);
int now=getsum(x-);
now%=;
update(x,-);
point(x,now,-b[i],,cnt,);
update(x+,cnt,-,,cnt,);
}
else
printf("%lld\n",a[].ans[]);
//printf("%lld\n",a[1].ans[2]);
}
return ;
}
codeforces 85D D. Sum of Medians 线段树的更多相关文章
- codeforces 1217E E. Sum Queries? (线段树
codeforces 1217E E. Sum Queries? (线段树 传送门:https://codeforces.com/contest/1217/problem/E 题意: n个数,m次询问 ...
- Codeforces 85D Sum of Medians(线段树)
题目链接:Codeforces 85D - Sum of Medians 题目大意:N个操作,add x:向集合中加入x:del x:删除集合中的x:sum:将集合排序后,将集合中全部下标i % 5 ...
- Yandex.Algorithm 2011 Round 1 D. Sum of Medians 线段树
题目链接: Sum of Medians Time Limit:3000MSMemory Limit:262144KB 问题描述 In one well-known algorithm of find ...
- codeforces 85D D. Sum of Medians Vector的妙用
D. Sum of Medians Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/problemset/prob ...
- [Codeforces 266E]More Queries to Array...(线段树+二项式定理)
[Codeforces 266E]More Queries to Array...(线段树+二项式定理) 题面 维护一个长度为\(n\)的序列\(a\),\(m\)个操作 区间赋值为\(x\) 查询\ ...
- 【Educational Codeforces Round 37】F. SUM and REPLACE 线段树+线性筛
题意 给定序列$a_n$,每次将$[L,R]$区间内的数$a_i$替换为$d(a_i)$,或者询问区间和 这题和区间开方有相同的操作 对于$a_i \in (1,10^6)$,$10$次$d(a_i) ...
- Codeforces Gym 100513F F. Ilya Muromets 线段树
F. Ilya Muromets Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/gym/100513/probl ...
- codeforces 1017C - Cloud Computing 权值线段树 差分 贪心
https://codeforces.com/problemset/problem/1070/C 题意: 有很多活动,每个活动可以在天数为$[l,r]$时,提供$C$个价格为$P$的商品 现在从第一天 ...
- Codeforces 1045. A. Last chance(网络流 + 线段树优化建边)
题意 给你 \(n\) 个武器,\(m\) 个敌人,问你最多消灭多少个敌人,并输出方案. 总共有三种武器. SQL 火箭 - 能消灭给你集合中的一个敌人 \(\sum |S| \le 100000\) ...
随机推荐
- 常用prototype函数
$("spcode").value --取得当前页面的值的value,可以赋值 $F('spcode') --不能赋值 $!spcode - ...
- iOS - UIButton折行文字显示设置
首先在控制器中创建一个button - (void)viewDidLoad { [super viewDidLoad]; UIButton * button = [[UIButton alloc] i ...
- Leetcode: Range Addition
Assume you have an array of length n initialized with all 0's and are given k update operations. Eac ...
- c 头文件<ctype.h>(一)
头文件<ctype.h>中声明了一些测试字符的函数. 每个函数的参数均为int类型,参数的值必须是EOF或可用unsigned char类型表示的字符,函数返回值为int类型. 如果参数c ...
- android Dialog&AlertDialog
Dialog dialog = new Dialog(context,R.style.AppBaseTheme); wifiView = AppData.inflater.inflate(R.layo ...
- JavaScricp
常用对话框 1.alert(""):警告对话框,作用是弹出一个警告对话框 2.confirm(""):确定对话框,弹出一个带确定和取消按钮的对话框——确定返回t ...
- Redis不同类型方法整合
1 对value操作的命令 exists(key):确认一个key是否存在 del(key):删除一个key type(key):返回值的类型 keys(pattern):返回满足给定patt ...
- Windows Phone 十四、磁贴通知
磁贴(Tile) Windows Phone 磁贴种类: 小尺寸 SmallLogo:71x71: Square71x71 中等 Logo:150x150: Square150x150 宽 WideL ...
- jquery网页换肤+jquery的cookie+动态调用css样式文件,可以的
比较具有参考性,代码全贴(当然,还需要一张图片需要的留个邮箱,看到就发) 贴在这儿吧,修改一下css的引用位置应该可以用 <%@ page language="java" c ...
- 用于svn添加当前目录下所有未追踪的文件,和删除所有手动删除的文件的脚本
由于要经常用到类似与 git 中的 git add --all 这种操作,但是发现svn中并不支持类似的操作. 虽然可以使用 wildcard 进行匹配,但是 wildcard是在shell中进行匹配 ...