codeforces 85D D. Sum of Medians 线段树
3 seconds
256 megabytes
standard input
standard output
In one well-known algorithm of finding the k-th order statistics we should divide all elements into groups of five consecutive elements and find the median of each five. A median is called the middle element of a sorted array (it's the third largest element for a group of five). To increase the algorithm's performance speed on a modern video card, you should be able to find a sum of medians in each five of the array.
A sum of medians of a sorted k-element set S = {a1, a2, ..., ak}, where a1 < a2 < a3 < ... < ak, will be understood by as

The
operator stands for taking the remainder, that is
stands for the remainder of dividing x by y.
To organize exercise testing quickly calculating the sum of medians for a changing set was needed.
The first line contains number n (1 ≤ n ≤ 105), the number of operations performed.
Then each of n lines contains the description of one of the three operations:
- add x — add the element x to the set;
- del x — delete the element x from the set;
- sum — find the sum of medians of the set.
For any add x operation it is true that the element x is not included in the set directly before the operation.
For any del x operation it is true that the element x is included in the set directly before the operation.
All the numbers in the input are positive integers, not exceeding 109.
For each operation sum print on the single line the sum of medians of the current set. If the set is empty, print 0.
Please, do not use the %lld specificator to read or write 64-bit integers in C++. It is preferred to use the cin, cout streams (also you may use the %I64d specificator).
6
add 4
add 5
add 1
add 2
add 3
sum
3
14
add 1
add 7
add 2
add 5
sum
add 6
add 8
add 9
add 3
add 4
add 10
sum
del 1
sum
5
11
13
#include<bits/stdc++.h>
using namespace std;
#define ll unsigned long long
#define pi (4*atan(1.0))
#define eps 1e-14
#define bug(x) cout<<"bug"<<x<<endl;
const int N=2e5+,M=1e6+,inf=1e9+;
const ll INF=1e18+,mod=;
int n,tree[N];
int lowbit(int x)
{
return x&-x;
}
void update(int x,int c)
{
while(x<1e5+)
{
tree[x]+=c;
x+=lowbit(x);
}
}
int getsum(int x)
{
int sum=;
while(x>)
{
sum+=tree[x];
x-=lowbit(x);
}
return sum;
}
struct is
{
int lazy;
ll ans[];
}a[N<<];
ll temp[];
void pushup(int pos)
{
for(int i=;i<;i++)
a[pos].ans[i]=a[pos<<].ans[i]+a[pos<<|].ans[i];
}
void change(int pos,int x)
{
x=(x%+)%;
int ji=;
for(int i=;i<;i++)
temp[i]=a[pos].ans[i];
for(int i=x;i<;i++)
a[pos].ans[i]=temp[ji++];
for(int i=;i<x;i++)
a[pos].ans[i]=temp[ji++];
}
void pushdown(int pos)
{
if(a[pos].lazy)
{
a[pos<<].lazy+=a[pos].lazy;
a[pos<<|].lazy+=a[pos].lazy;
change(pos<<,a[pos].lazy);
change(pos<<|,a[pos].lazy);
a[pos].lazy=;
}
}
void build(int l,int r,int pos)
{
a[pos].lazy=;
memset(a[pos].ans,,sizeof(a[pos].ans));
if(l==r)return;
int mid=(l+r)>>;
build(l,mid,pos<<);
build(mid+,r,pos<<|);
}
void update(int L,int R,int c,int l,int r,int pos)
{
if(L<=l&&r<=R)
{
a[pos].lazy+=c;
change(pos,c);
return;
}
pushdown(pos);
int mid=(l+r)>>;
if(L<=mid)
update(L,R,c,l,mid,pos<<);
if(R>mid)
update(L,R,c,mid+,r,pos<<|);
pushup(pos);
}
void point(int p,int k,int c,int l,int r,int pos)
{
if(l==r)
{
a[pos].ans[k]+=c;
return;
}
pushdown(pos);
int mid=(l+r)>>;
if(p<=mid)
point(p,k,c,l,mid,pos<<);
else
point(p,k,c,mid+,r,pos<<|);
pushup(pos);
}
char str[N][];
int b[N];
int s[N],cnt;
int getpos(int x)
{
int pos=lower_bound(s+,s++cnt,x)-s;
return pos;
}
int main()
{
int n;
scanf("%d",&n);
for(int i=;i<=n;i++)
{
scanf("%s",str[i]);
if(str[i][]=='a'||str[i][]=='d')
{
scanf("%d",&b[i]);
s[++cnt]=b[i];
}
}
sort(s+,s++cnt);
cnt=max(,cnt);
build(,cnt,);
for(int i=;i<=n;i++)
{
//cout<<str[i]<<endl;
if(str[i][]=='a')
{
int x=getpos(b[i]);
int now=getsum(x-);
now%=;
//cout<<x<<" "<<now<<" "<<b[i]<<endl;
update(x,);
update(x+,cnt,,,cnt,);
point(x,now,b[i],,cnt,);
}
else if(str[i][]=='d')
{
int x=getpos(b[i]);
int now=getsum(x-);
now%=;
update(x,-);
point(x,now,-b[i],,cnt,);
update(x+,cnt,-,,cnt,);
}
else
printf("%lld\n",a[].ans[]);
//printf("%lld\n",a[1].ans[2]);
}
return ;
}
codeforces 85D D. Sum of Medians 线段树的更多相关文章
- codeforces 1217E E. Sum Queries? (线段树
codeforces 1217E E. Sum Queries? (线段树 传送门:https://codeforces.com/contest/1217/problem/E 题意: n个数,m次询问 ...
- Codeforces 85D Sum of Medians(线段树)
题目链接:Codeforces 85D - Sum of Medians 题目大意:N个操作,add x:向集合中加入x:del x:删除集合中的x:sum:将集合排序后,将集合中全部下标i % 5 ...
- Yandex.Algorithm 2011 Round 1 D. Sum of Medians 线段树
题目链接: Sum of Medians Time Limit:3000MSMemory Limit:262144KB 问题描述 In one well-known algorithm of find ...
- codeforces 85D D. Sum of Medians Vector的妙用
D. Sum of Medians Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/problemset/prob ...
- [Codeforces 266E]More Queries to Array...(线段树+二项式定理)
[Codeforces 266E]More Queries to Array...(线段树+二项式定理) 题面 维护一个长度为\(n\)的序列\(a\),\(m\)个操作 区间赋值为\(x\) 查询\ ...
- 【Educational Codeforces Round 37】F. SUM and REPLACE 线段树+线性筛
题意 给定序列$a_n$,每次将$[L,R]$区间内的数$a_i$替换为$d(a_i)$,或者询问区间和 这题和区间开方有相同的操作 对于$a_i \in (1,10^6)$,$10$次$d(a_i) ...
- Codeforces Gym 100513F F. Ilya Muromets 线段树
F. Ilya Muromets Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/gym/100513/probl ...
- codeforces 1017C - Cloud Computing 权值线段树 差分 贪心
https://codeforces.com/problemset/problem/1070/C 题意: 有很多活动,每个活动可以在天数为$[l,r]$时,提供$C$个价格为$P$的商品 现在从第一天 ...
- Codeforces 1045. A. Last chance(网络流 + 线段树优化建边)
题意 给你 \(n\) 个武器,\(m\) 个敌人,问你最多消灭多少个敌人,并输出方案. 总共有三种武器. SQL 火箭 - 能消灭给你集合中的一个敌人 \(\sum |S| \le 100000\) ...
随机推荐
- 移动Web开发调研
背景 在移动互联网浪潮下,移动设备普及,对配置需要考虑移动端设备可访问性.Web作为最贴近用户的配置手段,面向从PC端传统页面,向移动端页面的转型. 概念 PC Web: 面向传统PC电脑的浏览器开发 ...
- Nodejs websocket入门
websocket 2011年技术文档 http://www.ibm.com/developerworks/cn/web/1112_huangxa_websocket/index.html 浏览器端接 ...
- 最新版ssh hibernate spring struts2环境搭建
最新版ssh hibernate spring struts2环境搭建 最新版spring Framework下载地址:spring4.0.0RELEASE环境搭建 http://repo.sprin ...
- TP框架常用(一)
25.显示最后一条查询的sql语句:主要用于在连贯操作时,检测拼接的sql语句是否正确 echo $this->db->last_query();//如:select * from pt_ ...
- PHP自带防SQL攻击函数区别
为了防止SQL注入攻击,PHP自带一个功能可以对输入的字符串进行处理,可以在较底层对输入进行安全上的初步处理,也即Magic Quotes.(php.ini magic_quotes_gpc).如果m ...
- peoplesoft SQR language
Understanding SQR Data Elements !Variables!Variables are storage places for text or numbers that you ...
- android sdk manager国内无法更新的解决办法
- Hdu 1081 To The Max
To The Max Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total ...
- app推送中的通知和消息区别
最近在做mqtt及其他消息推送的功能,推送服务挺多的,小米推,极光推,华为推,个推等,当然还有苹果的apns.感觉都差不多,尝试了apns,小米推和个推,各个厂家都提供的有sdk,demo. 关于通知 ...
- java中使用jxl导出Excel表格详细通用步骤
该方法一般接收两个参数,response和要导出的表格内容的list. 一般我们将数据库的数据查询出来在页面进行展示,根据用户需求,可能需要对页面数据进行导出. 此时只要将展示之前查询所得的数据放入s ...