https://vjudge.net/problem/UVALive-3211

As you must have experienced, instead of landing immediately, an aircraft sometimes waits in a holding loop close to the runway. This holding mechanism is required by air traffic controllers to space apart aircraft as much as possible on the runway (while keeping delays low). It is formally defined as a “holding pattern” and is a predetermined maneuver designed to keep an aircraft within a specified airspace.

Jim Tarjan, an air-traffic controller, has asked his brother Robert to help him to improve the behavior of the airport.

The TRACON area

The Terminal Radar Approach CONtrol (TRACON) controls aircraft approaching and departing when they are between 5 and 50 miles of the airport. In this final scheduling process, air traffic controllers make some aircraft wait before landing. Unfortunately this “waiting” process is complex as aircraft follow predetermined routes and their speed cannot be changed. To reach some degree of flexibility in the process, the basic delaying procedure is to make aircraft follow a holding pattern that has been designed for the TRACON area. Such patterns generate a constant prescribed delay for an aircraft (see Figure 1 for an example). Several holding patterns may exist in the same TRACON.

In the following, we assume that there is a single runway and that when an aircraft enters the TRACON area, it is assigned an early landing time, a late landing time and a possible holding pattern. The early landing time corresponds to the situation where the aircraft does not wait and lands as soon as possible. The late landing time corresponds to the situation where the aircraft waits in the prescribed holding pattern and then lands at that time. We assume that an aircraft enters at most one holding pattern. Hence, the early and late landing times are the only two possible times for the landing.

The security gap is the minimal elapsed time between consecutive landings. The objective is to maximize the security gap. Robert believes that you can help.

Input The input file, that contains all the relevant data, contains several test cases Each test case is described in the following way. The first line contains the number n of aircraft (2 ≤ n ≤ 2000). This line is followed by n lines. Each of these lines contains two integers, which represent the early landing time and the late landing time of an aircraft. Note that all times t are such that 0 ≤ t ≤ 107 .

Output For each input case, your program has to write a line that conttains the maximal security gap between consecutive landings. Note: The input file corresponds to Table 1.

Sample Input 10 44 156 153 182 48 109 160 201 55 186 54 207 55 165 17 58 132 160 87 197

Sample Output 10

//有空再来写翻译和思路,调了好久才AC(事实上就是把和标程不一样的地方改过来...)

 #include<iostream>
 #include<vector>
 #include<cstdio>
 #include<cmath>
 #include<cstring>
 using namespace std;
 ;
 struct TwoSet{
     ],S[maxn*];
     int n,c;
     vector<];
     void init(){
         ;i<n*;i++) G[i].clear();
         memset(mark,,sizeof(mark));
     }
     void add(int x,int xval,int y,int yval){
         x=x*+xval;
         y=y*+yval;
         G[x^].push_back(y);
         G[y^].push_back(x);
     }
     bool dfs(int u){
         ]) return false;
         if(mark[u]) return true;
         mark[u]=;
         S[c++]=u;
         ;i<G[u].size();i++) if(!dfs(G[u][i])) return false;
         return true;
     }
     bool Judge(){
         ;i<n*;i+=){
             ]){
                 c=;
                 if(!dfs(i)){
                     ) mark[S[--c]]=;
                     )) return false;
                 }
             }
         }
         return true;
     }

 };
 TwoSet solver;
 ];
 bool check(int x){
     solver.init();
     ;i<n;i++) ;a<;a++)
         ;j<n;j++) ;b<;b++)
             ,j,b^);
     return solver.Judge();
 }
 int main()
 {
     &&n){
         ,R=;
         solver.n=n;
         ;i<n;i++) ;a<;a++)
         scanf("%d",&T[i][a]),R=max(R,T[i][a]);
         while(L<R){
         )/;
         if(check(M)) L=M;
         ;
         }
         printf("%d\n",L);
     }
     ;
 }

LA3211 飞机调度 Now or later-二分法&TwoSet的更多相关文章

  1. 【LA3211 训练指南】飞机调度 【2-sat】

    题意 有n嫁飞机需要着陆.每架飞机都可以选择“早着陆”和“晚着陆”两种方式之一,且必须选择一种.第i架飞机的早着陆时间为Ei,晚着陆时间为Li,不得在其他时间着陆.你的任务是为这些飞机安排着陆方式,使 ...

  2. LA 3211 飞机调度

    题目链接:http://vjudge.net/contest/142615#problem/A 题意:n架飞机,每架可选择两个着落时间.安排一个着陆时间表,使得着陆间隔的最小值最大. 分析: 最小值最 ...

  3. 【LOJ】#2077. 「JSOI2016」飞机调度

    题解 考虑一架飞机飞完自己之后还能飞到哪些航线,用floyd求两点最短路 这个图建出来是个DAG,求最小路径覆盖即可,二分图匹配 注意判断时是航班的起飞时刻+直飞时间+加油时间+最短路时间 代码 #i ...

  4. LA 3211 飞机调度(2—SAT)

    https://vjudge.net/problem/UVALive-3211 题意: 有n架飞机需要着陆,每架飞机都可以选择“早着陆”和“晚着陆”两种方式之一,且必须选择一种,第i架飞机的早着陆时间 ...

  5. 飞机调度 Now or Later? LA 3211 (2-SAT问题)

    洛谷题目传送门 题目描述 有n架飞机需要着陆.每架飞机都可以选择“早着陆”和“晚着陆”两种方式之一,且必须选择一种.第i架飞机的早着陆时间为Ei,晚着陆时间为Li,不得在其他时间着陆.你的任务是为这些 ...

  6. BZOJ 4853 [Jsoi2016]飞机调度

    题解: 我严重怀疑语文水平(自己的和出题人的) 把航线按照拓扑关系建立DAG 然后最小路径覆盖 为什么两条首尾相接航线之间不用维护???? #include<iostream> #incl ...

  7. (纪录片)现代生活的秘密规则:算法 The Secret Rules of Modern Living: Algorithms

    简介: The Secret Rules of Modern Living: Algorithms (2015) 导演: David Briggs主演: Marcus du Sautoy类型: 纪录片 ...

  8. JSOI部分题解

    JSOI部分题解 JSOI2018 战争 问题转化为给定你两个凸包\(\mathbb S,\mathbb T\),每次独立的询问将\(\mathbb T\)中的每个点移动一个向量,问\(\mathbb ...

  9. CDN调度器HAProxy、Nginx、Varnish

    http://www.ttlsa.com/web/the-cdn-scheduler-nginx-haproxy-varnish/ CDN功能如下:1.将全网IP分为若干个IP段组,分组的依据通常是运 ...

随机推荐

  1. hi35183e增加exfat文件系统的支持

    64G-128G的tf卡文件系统格式为exfat,而hi3518e默认只支持fat32格式的tf卡.为了挂载64G以上的tf卡,只能将sd卡先格式化成FAT32.鉴于exfat性能比FAT32强,因此 ...

  2. linux awk命令

    简介 awk是一个强大的文本分析工具,相对于grep的查找,sed的编辑,awk在其对数据分析并生成报告时,显得尤为强大.简单来说awk就是把文件逐行的读入,以空格为默认分隔符将每行切片,切开的部分再 ...

  3. 36. Valid Sudoku

    ============= Determine if a Sudoku is valid, according to: Sudoku Puzzles - The Rules. The Sudoku b ...

  4. SQLServer分页存储过程

    创建存贮过程: Create PROCEDURE [dbo].[UP_GetRecordByPage]@tblName   varchar(255),       -- 表名@fldName varc ...

  5. C# 通过委托控制进度条以及多线程更新控件

    using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; usin ...

  6. Coding 初级教程(一)——用GitHub的GUI客户端对Coding的项目进行管理

    一.概述 二.Git基本概念 1.有关存储的四个概念 2.分支(branch) 三.项目管理实战操作 1.安装 GHfW(GitHub for Windows) 2.在Coding上新建一个项目(新建 ...

  7. JS正则实例

    <html> <body> </body> </html> <script> var strSrc = "xxa1b01c001y ...

  8. 服务器安装MongoDB

    1.下载MongoDB安装包,如:mongodb-win32-i386-1.8.1.zip: 2.新建目录“D:\MongoDB”,将安装中的bin目录下全部.exe文件复制到“D:\MongoDB” ...

  9. bootstrap在jsp中怎么没有效果?

    页面顶部<!DOCTYPE html> 

  10. spring mvc中的json整合

    spring mvc整合过程中是有版本兼容的问题.具体的哪个版本的springmvc和哪个个版本的json包冲突我也无从考证了.我用的springmvc版本是3.2.1jaskson的版本是 1.1. ...