链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=10

Area


Time Limit: 2 Seconds      Memory Limit: 65536 KB      Special Judge

Jerry, a middle school student, addicts himself to mathematical research. Maybe the problems he has thought are really too easy to an expert. But as an amateur, especially as a 15-year-old boy, he had done very well. He is so rolling in thinking the mathematical problem that he is easily to try to solve every problem he met in a mathematical way. One day, he found a piece of paper on the desk. His younger sister, Mary, a four-year-old girl, had drawn some lines. But those lines formed a special kind of concave polygon by accident as Fig. 1 shows.


Fig. 1 The lines his sister had drawn

"Great!" he thought, "The polygon seems so regular. I had just learned how to calculate the area of triangle, rectangle and circle. I'm sure I can find out how to calculate the area of this figure." And so he did. First of all, he marked the vertexes in the polygon with their coordinates as Fig. 2 shows. And then he found the result--0.75 effortless.


Fig.2 The polygon with the coordinates of vertexes

Of course, he was not satisfied with the solution of such an easy problem. "Mmm, if there's a random polygon on the paper, then how can I calculate the area?" he asked himself. Till then, he hadn't found out the general rules on calculating the area of a random polygon. He clearly knew that the answer to this question is out of his competence. So he asked you, an erudite expert, to offer him help. The kind behavior would be highly appreciated by him.

Input

The input data consists of several figures. The first line of the input for each figure contains a single integer n, the number of vertexes in the figure. (0 <= n <= 1000).

In the following n lines, each contain a pair of real numbers, which describes the coordinates of the vertexes, (xi, yi). The figure in each test case starts from the first vertex to the second one, then from the second to the third, ���� and so on. At last, it closes from the nth vertex to the first one.

The input ends with an empty figure (n = 0). And this figure not be processed.

Output

As shown below, the output of each figure should contain the figure number and a colon followed by the area of the figure or the string "Impossible".

If the figure is a polygon, compute its area (accurate to two fractional digits). According to the input vertexes, if they cannot form a polygon (that is, one line intersects with another which shouldn't be adjoined with it, for example, in a figure with four lines, the first line intersects with the third one), just display "Impossible", indicating the figure can't be a polygon. If the amount of the vertexes is not enough to form a closed polygon, the output message should be "Impossible" either.

Print a blank line between each test cases.

Sample Input

5
0 0
0 1
0.5 0.5
1 1
1 0
4
0 0
0 1
1 0
1 1
0

Output for the Sample Input

Figure 1: 0.75

Figure 2: Impossible

-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-

一开始看错题意,WA了好多次,要注意与当前线段相邻接的线段不判断

主要就是第一个线段,要跳过与下一条线段的相交性,以及最后一条线段的相交性,其他线段只需要向下跳过一个线段判断相交即可

 #include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <iostream>
#include <algorithm>
#include <math.h> #define MAXX 1005
#define eps 1e-8
using namespace std; typedef struct
{
double x;
double y;
}point; typedef struct
{
point st;
point ed;
}line; point p[MAXX];
line li[MAXX]; double crossProduct(point a,point b,point c)
{
return (c.x-a.x)*(b.y-a.y)-(c.y-a.y)*(b.x-a.x);
} double dist(point a,point b)
{
return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
} bool xy(double x,double y){ return x < y - eps; }
bool dy(double x,double y){ return x > y + eps; }
bool xyd(double x,double y){ return x < y + eps; }
bool dyd(double x,double y){ return x > y - eps; }
bool dd(double x,double y){ return fabs(x-y)<eps; } bool onSegment(point a,point b,point c)
{
double maxx=max(a.x,b.x);
double maxy=max(a.y,b.y);
double minx=min(a.x,b.x);
double miny=min(a.y,b.y); if(dd(crossProduct(a,b,c),0.0)&&xyd(c.x,maxx)&&dyd(c.x,minx)
&&xyd(c.y,maxy)&&dyd(c.y,miny))
return true;
return false;
} bool segIntersect(point p1,point p2,point p3,point p4)
{
double d1=crossProduct(p3,p4,p1);
double d2=crossProduct(p3,p4,p2);
double d3=crossProduct(p1,p2,p3);
double d4=crossProduct(p1,p2,p4); if(xy(d1*d2,0.0)&&xy(d3*d4,0.0))
return true;
if(dd(d1,0.0)&&onSegment(p3,p4,p1))
return true;
if(dd(d2,0.0)&&onSegment(p3,p4,p2))
return true;
if(dd(d3,0.0)&&onSegment(p1,p2,p3))
return true;
if(dd(d4,0.0)&&onSegment(p1,p2,p4))
return true;
return false;
} double Area(int n)
{
double ans=0.0; for(int i=; i<n; i++)
{
ans+=crossProduct(p[],p[i-],p[i]);
}
return fabs(ans)/2.0;
} int main()
{
int n,m,i,j;
double x,y;
int cas=;
while(scanf("%d",&n)!=EOF&&n)
{
for(i=; i<n; i++)
{
scanf("%lf%lf",&p[i].x,&p[i].y);
} for(i=; i<n-; i++)
{
li[i].st.x=p[i].x;
li[i].st.y=p[i].y;
li[i].ed.x=p[i+].x;
li[i].ed.y=p[i+].y;
}
li[n-].st.x=p[n-].x;
li[n-].st.y=p[n-].y;
li[n-].ed.x=p[].x;
li[n-].ed.y=p[].y;
bool flag=false;
for(i=; i<n; i++)
{
for(j=i+; j<n; j++)
{
if(i == && j == n-)continue;
/*if((li[i].st.x == li[j].st.x && li[i].st.y == li[j].st.y)
|| li[i].st.x == li[j].ed.x && li[i].st.y == li[j].ed.y
|| li[i].ed.x == li[j].st.x && li[i].ed.y == li[j].st.y
|| li[i].ed.x == li[j].ed.x && li[i].ed.y == li[j].ed.y)
continue;*/
if(segIntersect(li[i].st,li[i].ed,li[j].st,li[j].ed))
{
flag=true;
break;
}
}
} if(flag || n<)
{
printf("Figure %d: Impossible\n",cas++);
}
else
{
double ans=Area(n);
printf("Figure %d: %.2lf\n",cas++,ans);
}
printf("\n");
}
return ;
}

zoj 1010 (线段相交判断+多边形求面积)的更多相关文章

  1. POJ 1039 Pipe(直线和线段相交判断,求交点)

    Pipe Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 8280   Accepted: 2483 Description ...

  2. 计算几何基础——矢量和叉积 && 叉积、线段相交判断、凸包(转载)

    转载自 http://blog.csdn.net/william001zs/article/details/6213485 矢量 如果一条线段的端点是有次序之分的话,那么这种线段就称为 有向线段,如果 ...

  3. POJ 3449 Geometric Shapes(判断几个不同图形的相交,线段相交判断)

    Geometric Shapes Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 1243   Accepted: 524 D ...

  4. ACM1558两线段相交判断和并查集

    Segment set Problem Description A segment and all segments which are connected with it compose a seg ...

  5. POJ 1066 Treasure Hunt(线段相交判断)

    Treasure Hunt Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 4797   Accepted: 1998 Des ...

  6. POJ 3304 Segments (直线和线段相交判断)

    Segments Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7739   Accepted: 2316 Descript ...

  7. Area---poj1265(皮克定理+多边形求面积)

    题目链接:http://poj.org/problem?id=1265 题意是:有一个机器人在矩形网格中行走,起始点是(0,0),每次移动(dx,dy)的偏移量,已知,机器人走的图形是一个多边形,求这 ...

  8. HDU 1255 覆盖的面积(线段树:扫描线求面积并)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1255 题目大意:给你若干个矩形,让你求这些矩形重叠两次及以上的部分的面积. 解题思路:模板题,跟HDU ...

  9. poj2653线段相交判断

    Stan has n sticks of various length. He throws them one at a time on the floor in a random way. Afte ...

随机推荐

  1. selenium+phantomJS学习使用记录

    背景知识: phantomjs是一个基于webkit的没有界面的浏览器,所以运行起来比完整的浏览器要高效. selenium是一个测试web应用的工具,目前是2.42.1版本,和1版的区别在于2.0+ ...

  2. 161124、Java 异常处理的误区和经验总结

    本文着重介绍了 Java 异常选择和使用中的一些误区,希望各位读者能够熟练掌握异常处理的一些注意点和原则,注意总结和归纳.只有处理好了异常,才能提升开发人员的基本素养,提高系统的健壮性,提升用户体验, ...

  3. scala模拟一个timer

    直接上代码: package com.test.scalaw.test.demo import java.util.Date /** * 模拟一个定时timer */ object Timer { d ...

  4. mysql表导入到oracle

    一.创建jack表,并导入一下数据 mysql),flwo )) engine=myisam; Query OK, rows affected (0.08 sec) mysql> load da ...

  5. PHP处理CSV表格文件的常用操作方法是怎么样呢

    php来说,fgetcsv读入csv表格,返回一个数组,然后foreach输出成HTML的<table>,这步操作几行代码就能实现,非常简单.工作量主要还在于浏览器前端,建议你用jQuer ...

  6. 几个常见的Laravel报错及解决方法

    报错:「Can't swap PDO instance while within transaction」 transactions >= 1) {throw new RuntimeExcept ...

  7. JavaEE基础(二)

    1.Java语言基础(常量的概述和使用) A:什么是常量 在程序执行的过程中其值不可以发生改变 B:Java中常量的分类 字面值常量 自定义常量(面向对象部分讲) C:字面值常量的分类 字符串常量 用 ...

  8. node-webkit教程<>Native UI API 之Menu(菜单)

    node-webkit教程(6)Native UI API 之Menu(菜单)1 前言... 2 6.1  Menu 概述... 3 6.2  menu api6 6.2.1  new Menu([o ...

  9. C#:实现托盘(任务栏图标与托盘图标互斥)

    实现托盘(任务栏图标与托盘图标互斥),并且在点击任务栏图标时实现的最小化与点击最小化按钮分离. 具体如下: 1.向窗体上添加如下控件:MenuStrip menuStrip1, NotifyIcon ...

  10. BLOB:大数据,大对象,在数据库中用来存储超长文本的数据,例如图片等

    将一张图片存储在mysql中,并读取出来(BLOB数据:插入BLOB类型的数据必须使用PreparedStatement,因为插入BLOB类型的数据无法使用字符串拼写): -------------- ...