链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=10

Area


Time Limit: 2 Seconds      Memory Limit: 65536 KB      Special Judge

Jerry, a middle school student, addicts himself to mathematical research. Maybe the problems he has thought are really too easy to an expert. But as an amateur, especially as a 15-year-old boy, he had done very well. He is so rolling in thinking the mathematical problem that he is easily to try to solve every problem he met in a mathematical way. One day, he found a piece of paper on the desk. His younger sister, Mary, a four-year-old girl, had drawn some lines. But those lines formed a special kind of concave polygon by accident as Fig. 1 shows.


Fig. 1 The lines his sister had drawn

"Great!" he thought, "The polygon seems so regular. I had just learned how to calculate the area of triangle, rectangle and circle. I'm sure I can find out how to calculate the area of this figure." And so he did. First of all, he marked the vertexes in the polygon with their coordinates as Fig. 2 shows. And then he found the result--0.75 effortless.


Fig.2 The polygon with the coordinates of vertexes

Of course, he was not satisfied with the solution of such an easy problem. "Mmm, if there's a random polygon on the paper, then how can I calculate the area?" he asked himself. Till then, he hadn't found out the general rules on calculating the area of a random polygon. He clearly knew that the answer to this question is out of his competence. So he asked you, an erudite expert, to offer him help. The kind behavior would be highly appreciated by him.

Input

The input data consists of several figures. The first line of the input for each figure contains a single integer n, the number of vertexes in the figure. (0 <= n <= 1000).

In the following n lines, each contain a pair of real numbers, which describes the coordinates of the vertexes, (xi, yi). The figure in each test case starts from the first vertex to the second one, then from the second to the third, ���� and so on. At last, it closes from the nth vertex to the first one.

The input ends with an empty figure (n = 0). And this figure not be processed.

Output

As shown below, the output of each figure should contain the figure number and a colon followed by the area of the figure or the string "Impossible".

If the figure is a polygon, compute its area (accurate to two fractional digits). According to the input vertexes, if they cannot form a polygon (that is, one line intersects with another which shouldn't be adjoined with it, for example, in a figure with four lines, the first line intersects with the third one), just display "Impossible", indicating the figure can't be a polygon. If the amount of the vertexes is not enough to form a closed polygon, the output message should be "Impossible" either.

Print a blank line between each test cases.

Sample Input

5
0 0
0 1
0.5 0.5
1 1
1 0
4
0 0
0 1
1 0
1 1
0

Output for the Sample Input

Figure 1: 0.75

Figure 2: Impossible

-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-

一开始看错题意,WA了好多次,要注意与当前线段相邻接的线段不判断

主要就是第一个线段,要跳过与下一条线段的相交性,以及最后一条线段的相交性,其他线段只需要向下跳过一个线段判断相交即可

 #include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <iostream>
#include <algorithm>
#include <math.h> #define MAXX 1005
#define eps 1e-8
using namespace std; typedef struct
{
double x;
double y;
}point; typedef struct
{
point st;
point ed;
}line; point p[MAXX];
line li[MAXX]; double crossProduct(point a,point b,point c)
{
return (c.x-a.x)*(b.y-a.y)-(c.y-a.y)*(b.x-a.x);
} double dist(point a,point b)
{
return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
} bool xy(double x,double y){ return x < y - eps; }
bool dy(double x,double y){ return x > y + eps; }
bool xyd(double x,double y){ return x < y + eps; }
bool dyd(double x,double y){ return x > y - eps; }
bool dd(double x,double y){ return fabs(x-y)<eps; } bool onSegment(point a,point b,point c)
{
double maxx=max(a.x,b.x);
double maxy=max(a.y,b.y);
double minx=min(a.x,b.x);
double miny=min(a.y,b.y); if(dd(crossProduct(a,b,c),0.0)&&xyd(c.x,maxx)&&dyd(c.x,minx)
&&xyd(c.y,maxy)&&dyd(c.y,miny))
return true;
return false;
} bool segIntersect(point p1,point p2,point p3,point p4)
{
double d1=crossProduct(p3,p4,p1);
double d2=crossProduct(p3,p4,p2);
double d3=crossProduct(p1,p2,p3);
double d4=crossProduct(p1,p2,p4); if(xy(d1*d2,0.0)&&xy(d3*d4,0.0))
return true;
if(dd(d1,0.0)&&onSegment(p3,p4,p1))
return true;
if(dd(d2,0.0)&&onSegment(p3,p4,p2))
return true;
if(dd(d3,0.0)&&onSegment(p1,p2,p3))
return true;
if(dd(d4,0.0)&&onSegment(p1,p2,p4))
return true;
return false;
} double Area(int n)
{
double ans=0.0; for(int i=; i<n; i++)
{
ans+=crossProduct(p[],p[i-],p[i]);
}
return fabs(ans)/2.0;
} int main()
{
int n,m,i,j;
double x,y;
int cas=;
while(scanf("%d",&n)!=EOF&&n)
{
for(i=; i<n; i++)
{
scanf("%lf%lf",&p[i].x,&p[i].y);
} for(i=; i<n-; i++)
{
li[i].st.x=p[i].x;
li[i].st.y=p[i].y;
li[i].ed.x=p[i+].x;
li[i].ed.y=p[i+].y;
}
li[n-].st.x=p[n-].x;
li[n-].st.y=p[n-].y;
li[n-].ed.x=p[].x;
li[n-].ed.y=p[].y;
bool flag=false;
for(i=; i<n; i++)
{
for(j=i+; j<n; j++)
{
if(i == && j == n-)continue;
/*if((li[i].st.x == li[j].st.x && li[i].st.y == li[j].st.y)
|| li[i].st.x == li[j].ed.x && li[i].st.y == li[j].ed.y
|| li[i].ed.x == li[j].st.x && li[i].ed.y == li[j].st.y
|| li[i].ed.x == li[j].ed.x && li[i].ed.y == li[j].ed.y)
continue;*/
if(segIntersect(li[i].st,li[i].ed,li[j].st,li[j].ed))
{
flag=true;
break;
}
}
} if(flag || n<)
{
printf("Figure %d: Impossible\n",cas++);
}
else
{
double ans=Area(n);
printf("Figure %d: %.2lf\n",cas++,ans);
}
printf("\n");
}
return ;
}

zoj 1010 (线段相交判断+多边形求面积)的更多相关文章

  1. POJ 1039 Pipe(直线和线段相交判断,求交点)

    Pipe Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 8280   Accepted: 2483 Description ...

  2. 计算几何基础——矢量和叉积 && 叉积、线段相交判断、凸包(转载)

    转载自 http://blog.csdn.net/william001zs/article/details/6213485 矢量 如果一条线段的端点是有次序之分的话,那么这种线段就称为 有向线段,如果 ...

  3. POJ 3449 Geometric Shapes(判断几个不同图形的相交,线段相交判断)

    Geometric Shapes Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 1243   Accepted: 524 D ...

  4. ACM1558两线段相交判断和并查集

    Segment set Problem Description A segment and all segments which are connected with it compose a seg ...

  5. POJ 1066 Treasure Hunt(线段相交判断)

    Treasure Hunt Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 4797   Accepted: 1998 Des ...

  6. POJ 3304 Segments (直线和线段相交判断)

    Segments Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7739   Accepted: 2316 Descript ...

  7. Area---poj1265(皮克定理+多边形求面积)

    题目链接:http://poj.org/problem?id=1265 题意是:有一个机器人在矩形网格中行走,起始点是(0,0),每次移动(dx,dy)的偏移量,已知,机器人走的图形是一个多边形,求这 ...

  8. HDU 1255 覆盖的面积(线段树:扫描线求面积并)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1255 题目大意:给你若干个矩形,让你求这些矩形重叠两次及以上的部分的面积. 解题思路:模板题,跟HDU ...

  9. poj2653线段相交判断

    Stan has n sticks of various length. He throws them one at a time on the floor in a random way. Afte ...

随机推荐

  1. TVideoGrabber如何并行处理多摄像头

    大家都知道 TVideoGrabber是一款支持包括C#..NET.VB.NET.C++.Delphi.C++Builder和ActiveX平台在内的视频处理控件,可以捕捉视频,也可以作为多媒体播放器 ...

  2. :first // :last

    描述: 获取匹配的第一个元素 HTML 代码: <ul> <li>list item 1</li> <li>list item 2</li> ...

  3. 关闭 Windows 的常用端口

    netstat -ano 可以看到目前开着哪些端口 netstat -ano|findstr <端口号>   可以找到开放的端口的那条,最后还列出了 PID. 然后到任务管理器中,你可以查 ...

  4. 【jqGrid for ASP.NET MVC Documentation】.学习笔记.6.分层

    1 两级分层 每个父 grid 的行,都能有子 grid .这被叫做 层次,它用来显示相关的 表,主信息 –> 明细信息等. } 一旦你为 父子 grid 都定义了 Models ,下一步就是设 ...

  5. -Xms512m -Xmx1024m -XX:PermSize=256m -XX:MaxPermSize=512m

    -Xms 最小堆的大小, 也就是当你的虚拟机启动后, 就会分配这么大的堆内存给你 -Xmx 是最大堆的大小 当最小堆占满后,会尝试进行GC,如果GC之后还不能得到足够的内存(GC未必会收集到所有当前可 ...

  6. java 面试每日一题6

    题目:古典问题:有一对兔子,从出生后第3个月起每个月都生一对兔子,小兔子长到第三个月后每个月又生一对兔子,假如兔子都不死,问每个月的兔子总数为多少? 1.程序分析: 兔子的规律为数列1,1,2,3,5 ...

  7. mybatis+springMVC新感悟

    一直以为按照例子里写的.先编写User实体类,之后在编写User.xml之后在配置文件里指明接口文件.然后在controller中就可以通过就可以通过定义接口,在取值 IUserOperation u ...

  8. JSTL.带标签体的标签,方法和例子

    1. 实现 forEach 标签: 两个属性: items(集合类型, Collection), var(String 类型) doTag: 遍历 items 对应的集合 把正在遍历的对象放入到 pa ...

  9. TreeView 节点的显示,读取,操作

    using System;using System.Collections;using System.Configuration;using System.Data;using System.Linq ...

  10. Android invalidate() 和 postInvalidate()的区别

    Android提供了Invalidate方法实现界面刷新,但是Invalidate不能直接在线程中调用,因为他是违背了单线程模型:Android UI操作并不是线程安全的,并且这些操作必须在UI线程中 ...