zoj 1010 (线段相交判断+多边形求面积)
链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=10
Area
Time Limit: 2 Seconds Memory Limit: 65536 KB Special Judge
Jerry, a middle school student, addicts himself to mathematical research. Maybe the problems he has thought are really too easy to an expert. But as an amateur, especially as a 15-year-old boy, he had done very well. He is so rolling in thinking the mathematical problem that he is easily to try to solve every problem he met in a mathematical way. One day, he found a piece of paper on the desk. His younger sister, Mary, a four-year-old girl, had drawn some lines. But those lines formed a special kind of concave polygon by accident as Fig. 1 shows.
Fig. 1 The lines his sister had drawn
"Great!" he thought, "The polygon seems so regular. I had just learned how to calculate the area of triangle, rectangle and circle. I'm sure I can find out how to calculate the area of this figure." And so he did. First of all, he marked the vertexes in the polygon with their coordinates as Fig. 2 shows. And then he found the result--0.75 effortless.
Fig.2 The polygon with the coordinates of vertexes
Of course, he was not satisfied with the solution of such an easy problem. "Mmm, if there's a random polygon on the paper, then how can I calculate the area?" he asked himself. Till then, he hadn't found out the general rules on calculating the area of a random polygon. He clearly knew that the answer to this question is out of his competence. So he asked you, an erudite expert, to offer him help. The kind behavior would be highly appreciated by him.
Input
The input data consists of several figures. The first line of the input for each figure contains a single integer n, the number of vertexes in the figure. (0 <= n <= 1000).
In the following n lines, each contain a pair of real numbers, which describes the coordinates of the vertexes, (xi, yi). The figure in each test case starts from the first vertex to the second one, then from the second to the third, ���� and so on. At last, it closes from the nth vertex to the first one.
The input ends with an empty figure (n = 0). And this figure not be processed.
Output
As shown below, the output of each figure should contain the figure number and a colon followed by the area of the figure or the string "Impossible".
If the figure is a polygon, compute its area (accurate to two fractional digits). According to the input vertexes, if they cannot form a polygon (that is, one line intersects with another which shouldn't be adjoined with it, for example, in a figure with four lines, the first line intersects with the third one), just display "Impossible", indicating the figure can't be a polygon. If the amount of the vertexes is not enough to form a closed polygon, the output message should be "Impossible" either.
Print a blank line between each test cases.
Sample Input
5
0 0
0 1
0.5 0.5
1 1
1 0
4
0 0
0 1
1 0
1 1
0
Output for the Sample Input
Figure 1: 0.75
Figure 2: Impossible
-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
一开始看错题意,WA了好多次,要注意与当前线段相邻接的线段不判断
主要就是第一个线段,要跳过与下一条线段的相交性,以及最后一条线段的相交性,其他线段只需要向下跳过一个线段判断相交即可
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <iostream>
#include <algorithm>
#include <math.h> #define MAXX 1005
#define eps 1e-8
using namespace std; typedef struct
{
double x;
double y;
}point; typedef struct
{
point st;
point ed;
}line; point p[MAXX];
line li[MAXX]; double crossProduct(point a,point b,point c)
{
return (c.x-a.x)*(b.y-a.y)-(c.y-a.y)*(b.x-a.x);
} double dist(point a,point b)
{
return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
} bool xy(double x,double y){ return x < y - eps; }
bool dy(double x,double y){ return x > y + eps; }
bool xyd(double x,double y){ return x < y + eps; }
bool dyd(double x,double y){ return x > y - eps; }
bool dd(double x,double y){ return fabs(x-y)<eps; } bool onSegment(point a,point b,point c)
{
double maxx=max(a.x,b.x);
double maxy=max(a.y,b.y);
double minx=min(a.x,b.x);
double miny=min(a.y,b.y); if(dd(crossProduct(a,b,c),0.0)&&xyd(c.x,maxx)&&dyd(c.x,minx)
&&xyd(c.y,maxy)&&dyd(c.y,miny))
return true;
return false;
} bool segIntersect(point p1,point p2,point p3,point p4)
{
double d1=crossProduct(p3,p4,p1);
double d2=crossProduct(p3,p4,p2);
double d3=crossProduct(p1,p2,p3);
double d4=crossProduct(p1,p2,p4); if(xy(d1*d2,0.0)&&xy(d3*d4,0.0))
return true;
if(dd(d1,0.0)&&onSegment(p3,p4,p1))
return true;
if(dd(d2,0.0)&&onSegment(p3,p4,p2))
return true;
if(dd(d3,0.0)&&onSegment(p1,p2,p3))
return true;
if(dd(d4,0.0)&&onSegment(p1,p2,p4))
return true;
return false;
} double Area(int n)
{
double ans=0.0; for(int i=; i<n; i++)
{
ans+=crossProduct(p[],p[i-],p[i]);
}
return fabs(ans)/2.0;
} int main()
{
int n,m,i,j;
double x,y;
int cas=;
while(scanf("%d",&n)!=EOF&&n)
{
for(i=; i<n; i++)
{
scanf("%lf%lf",&p[i].x,&p[i].y);
} for(i=; i<n-; i++)
{
li[i].st.x=p[i].x;
li[i].st.y=p[i].y;
li[i].ed.x=p[i+].x;
li[i].ed.y=p[i+].y;
}
li[n-].st.x=p[n-].x;
li[n-].st.y=p[n-].y;
li[n-].ed.x=p[].x;
li[n-].ed.y=p[].y;
bool flag=false;
for(i=; i<n; i++)
{
for(j=i+; j<n; j++)
{
if(i == && j == n-)continue;
/*if((li[i].st.x == li[j].st.x && li[i].st.y == li[j].st.y)
|| li[i].st.x == li[j].ed.x && li[i].st.y == li[j].ed.y
|| li[i].ed.x == li[j].st.x && li[i].ed.y == li[j].st.y
|| li[i].ed.x == li[j].ed.x && li[i].ed.y == li[j].ed.y)
continue;*/
if(segIntersect(li[i].st,li[i].ed,li[j].st,li[j].ed))
{
flag=true;
break;
}
}
} if(flag || n<)
{
printf("Figure %d: Impossible\n",cas++);
}
else
{
double ans=Area(n);
printf("Figure %d: %.2lf\n",cas++,ans);
}
printf("\n");
}
return ;
}
zoj 1010 (线段相交判断+多边形求面积)的更多相关文章
- POJ 1039 Pipe(直线和线段相交判断,求交点)
Pipe Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 8280 Accepted: 2483 Description ...
- 计算几何基础——矢量和叉积 && 叉积、线段相交判断、凸包(转载)
转载自 http://blog.csdn.net/william001zs/article/details/6213485 矢量 如果一条线段的端点是有次序之分的话,那么这种线段就称为 有向线段,如果 ...
- POJ 3449 Geometric Shapes(判断几个不同图形的相交,线段相交判断)
Geometric Shapes Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 1243 Accepted: 524 D ...
- ACM1558两线段相交判断和并查集
Segment set Problem Description A segment and all segments which are connected with it compose a seg ...
- POJ 1066 Treasure Hunt(线段相交判断)
Treasure Hunt Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 4797 Accepted: 1998 Des ...
- POJ 3304 Segments (直线和线段相交判断)
Segments Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7739 Accepted: 2316 Descript ...
- Area---poj1265(皮克定理+多边形求面积)
题目链接:http://poj.org/problem?id=1265 题意是:有一个机器人在矩形网格中行走,起始点是(0,0),每次移动(dx,dy)的偏移量,已知,机器人走的图形是一个多边形,求这 ...
- HDU 1255 覆盖的面积(线段树:扫描线求面积并)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1255 题目大意:给你若干个矩形,让你求这些矩形重叠两次及以上的部分的面积. 解题思路:模板题,跟HDU ...
- poj2653线段相交判断
Stan has n sticks of various length. He throws them one at a time on the floor in a random way. Afte ...
随机推荐
- scrapy学习记录
scrapy是一个用来爬取一个或多个网站的数据,提取数据的应用框架.下载过程非常复杂,而且会遇到各种问题.所以写个博客来记录下. 安装好python2.7之后,就可以开始.安装scrapy前还需要安装 ...
- linux设备驱动归纳总结(六):1.中断的实现【转】
本文转载自:http://blog.chinaunix.net/uid-25014876-id-90740.html linux设备驱动归纳总结(六):1.中断的实现 xxxxxxxxxxxxxxxx ...
- Java排序算法(1)
Java中的排序算法(1) package com.softeem.jbs.lesson4; import java.util.Random; /** * 排序测试类 * * 排序算法的分类如下: ...
- Linux查看CPU和内存使用情况【转】
转自:http://www.cnblogs.com/xd502djj/archive/2011/03/01/1968041.html 在系统维护的过程中,随时可能有需要查看 CPU 使用率,并根据相应 ...
- java对象的序列化与反序列化使用
1.Java序列化与反序列化 Java序列化是指把Java对象转换为字节序列的过程:而Java反序列化是指把字节序列恢复为Java对象的过程. 2.为什么需要序列化与反序列化 我们知道,当两个进程进 ...
- [转]ConsumeContainerWhitespace property to remove blank space in SSRS 2008 report
转自:http://beyondrelational.com/modules/2/blogs/115/posts/11153/consumecontainerwhitespace-property-t ...
- 【jQuery UI 1.8 The User Interface Library for jQuery】.学习笔记.8.Datepicker控件
默认datepicker的安装启用 探索它的配置选项 安装启用一个触发按钮 配置一个供选择的动画 dateFormat选项 简单的国际化 多月datepicker 日期范围选择 datepicker的 ...
- struts2结果类型
struts2结果类型: 结果类型 描述 前request域属性是否丢失 1 dispatcher 用于与jsp整合的结果类型.默认结果类型. 2 chain Action链式处理结果类型.前一个Ac ...
- cookie学习
cookie是储存于访问者的计算机中的变量,每当同一台计算机通过浏览器请求某个页面时,就会发送这个cookie,可以使用javascript来创建和取回cookie的值. 创建和存储cookie 首先 ...
- 杭电1003-Max Sum
Max Sum Problem Description Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the ...