POJ 3532 Resistance(高斯消元+基尔霍夫定理)
【题目链接】 http://poj.org/problem?id=3532
【题目大意】
给出n个点,一些点之间有电阻相连,求1~n的等效电阻
【题解】
有基尔霍夫定理:任何一个点(除起点和终点)发出的电流和与接收的电流和相等。
由ΣAi=0可以得到Σ(Ui-Uj)/Rij=0,Σ(U1-Uj)/R1j=1,Σ(Un-Uj)/Rnj=-1
我们设电流为1A,终点电势为0列关于电势的方程组,最后的等效电阻就是起点和终点的电势差除以总电流
【代码】
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <cstring>
using namespace std;
const double eps=1e-9;
const int MAXN=220;
double a[MAXN][MAXN],x[MAXN];// a和x分别为方程的左边的矩阵和等式右边的值,求解之后x存的就是结果
int equ,var;// 方程数和未知数个数
// 返回0表示无解,1表示有解
int Gauss(){
int i,j,k,col,max_r;
for(k=0,col=0;k<equ&&col<var;k++,col++){
max_r=k;
for(i=k+1;i<equ;i++)if(fabs(a[i][col])>fabs(a[max_r][col]))max_r=i;
if(fabs(a[max_r][col])<eps)return 0;
if(k!=max_r){
for(j=col;j<var;j++)swap(a[k][j],a[max_r][j]);
swap(x[k],x[max_r]);
}x[k]/=a[k][col];
for(j=col+1;j<var;j++)a[k][j]/=a[k][col];
a[k][col]=1;
for(i=0;i<equ;i++)if(i!=k){
x[i]-=x[k]*a[i][k];
for(j=col+1;j<var;j++)a[i][j]-=a[k][j]*a[i][col];
a[i][col]=0;
}
}
return 1;
}
int N,M,u,v;
double r;
void solve(){
memset(a,0,sizeof(a));
for(int i=0;i<M;i++){
scanf("%d%d%lf",&u,&v,&r);
--u;--v;
double s=1.0/r;
a[u][u]+=s;
a[v][v]+=s;
a[u][v]-=s;
a[v][u]-=s;
}a[N-1][N-1]+=1;
x[0]=1.0; x[N-1]=-1.0;
equ=N; var=N;
Gauss();
printf("%.2f\n",x[0]);
}
int main(){
while(~scanf("%d%d",&N,&M))solve();
return 0;
}
POJ 3532 Resistance(高斯消元+基尔霍夫定理)的更多相关文章
- POJ 2947-Widget Factory(高斯消元解同余方程式)
题目地址:id=2947">POJ 2947 题意:N种物品.M条记录,接写来M行,每行有K.Start,End,表述从星期Start到星期End,做了K件物品.接下来的K个数为物品的 ...
- poj 2065 SETI 高斯消元
看题就知道要使用高斯消元求解! 代码如下: #include<iostream> #include<algorithm> #include<iomanip> #in ...
- POJ 2065 SETI [高斯消元同余]
题意自己看,反正是裸题... 普通高斯消元全换成模意义下行了 模模模! #include <iostream> #include <cstdio> #include <c ...
- POJ.2065.SETI(高斯消元 模线性方程组)
题目链接 \(Description\) 求\(A_0,A_1,A_2,\cdots,A_{n-1}\),满足 \[A_0*1^0+A_1*1^1+\ldots+A_{n-1}*1^{n-1}\equ ...
- poj The Clocks 高斯消元
由于数据量不大,所以这题有很多解法. 我用的是高斯消元化为逆矩阵解决的…… 代码如下: #include<stdio.h> #include<iostream> using n ...
- POJ 2065 SETI 高斯消元解线性同余方程
题意: 给出mod的大小,以及一个不大于70长度的字符串.每个字符代表一个数字,且为矩阵的增广列.系数矩阵如下 1^0 * a0 + 1^1 * a1 + ... + 1^(n-1) * an-1 = ...
- POJ 1830 【高斯消元第一题】
首先...使用abs()等数学函数的时候,浮点数用#include<cmath>,其它用#include<cstdlib>. 概念: [矩阵的秩] 在线性代数中,一个矩阵A的列 ...
- HDU5006 Resistance(高斯消元)
给你一个复杂的网路图,然后告诉你s,t,求s,t的等效电阻.方法是设s的电势为1,t的电势为0.然后对于其它的每个点x,满足的是sigma(ux-uy)/R(x,y)(即对每个与x相连的节点y,电势差 ...
- Poj 1830 高斯消元
开关问题 Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 5418 Accepted: 2022 Description 有N个相 ...
随机推荐
- [洛谷P2016] 战略游戏 (树形dp)
战略游戏 题目描述 Bob喜欢玩电脑游戏,特别是战略游戏.但是他经常无法找到快速玩过游戏的办法.现在他有个问题. 他要建立一个古城堡,城堡中的路形成一棵树.他要在这棵树的结点上放置最少数目的士兵,使得 ...
- SCOI2008奖励关 [状压dp]
题目描述 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物,每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的宝物以后也不能再 ...
- mmall项目之问题一(mavenplugin问题)
在进行mybatis逆向工程到时候,报错,提示maven plugin 错误,提示missing..... 解决办法: 因为之前到pom中忘记了加版本信息,添加后错误消失:
- bzoj 4004 [JLOI2015]装备购买 拟阵+线性基
[JLOI2015]装备购买 Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 1820 Solved: 547[Submit][Status][Dis ...
- React.js基础知识
一. react.js的基本使用方法 (1)快速使用,hello world <div id="app"></div> <script src=&qu ...
- 2017年上海金马五校程序设计竞赛:Problem A : STEED Cards (STL全排列函数)
Description Corn does not participate the STEED contest, but he is interested in the word "STEE ...
- python3 进程_multiprocessing模块
'''多进程优点:可以利用多核,实现并行运算缺点:1.开销太大: 2.通信困难使用方式跟开多线程一样''' 多进程 import multiprocessing import time,os def ...
- sprintf,snprintf的用法(可以作为linux中itoa函数的补充)【转】
转自:http://blog.csdn.net/educast/article/details/25068445 函数功能:把格式化的数据写入某个字符串 头文件:stdio.h 函数原型:int sp ...
- Download PuTTY: latest development snapshot
Download PuTTY: latest development snapshot https://www.chiark.greenend.org.uk/~sgtatham/putty/lates ...
- JMeter之定时器的作用域
定时器的作用域 1.定时器是在每个sampler(采样器)之前执行的,而不是之后(无论定时器位置在sampler之前还是下面): 2.当执行一个sampler之前时,所有当前作用域内的定时器都会被执行 ...