UVALIVE 2954 Task Sequences
竞赛图:图中的任意两点间有且仅有一条有向弧连接
求竞赛图中的哈密顿路的算法:
首先,由数学归纳法可证竞赛图在n>=2时必存在哈密顿路;
(1)n=2时显然;
(2)假设n=k时,结论成立,哈密顿路为V1,V2,...,Vi,...,Vk;
现添加第k+1个结点,若存在弧<Vi,Vk+1>和弧<Vk+1,Vi+1>,则可得哈密顿回路V1,V2,...,Vi,Vk+1,Vi+1,...,Vk;
若不存在上述的vi,考虑到Vk+1与v1~vk的连通状况,则只有下面种原哈密顿路的情况:
1.所有的Vi(1<i<k)与Vk+1的弧的方向都是<Vi,Vk+1>,那么可得哈密顿回路V1,V2,...,Vi,...,Vk,Vk+1;
2.所有的Vi(1<i<k)与Vk+1的弧的方向都是<Vk+1,Vi>,那么可得哈密顿回路Vk+1,V1,V2,...,Vi,...,Vk;
3.存在一个中间结点m,使得所有的Vi(1<=i<=m)与Vk+1的弧方向为<Vk+1,Vi>,所有的
#include <map>
#include <set>
#include <list>
#include <cmath>
#include <ctime>
#include <deque>
#include <stack>
#include <queue>
#include <cctype>
#include <cstdio>
#include <string>
#include <vector>
#include <climits>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define LL long long
#define PI 3.1415926535897932626
using namespace std;
int gcd(int a, int b) {return a % b == ? b : gcd(b, a % b);}
#define MAXN 1010
int next[MAXN],head;
string res;
int pick[MAXN][MAXN];
int N;
int main()
{
while (cin >> N)
{
memset(next,,sizeof(next));
getline(cin,res);
for (int i = ; i <= N; i++)
{
getline(cin,res);
for (int j = ; j <= N; j++)
pick[i][j] = res[(j -) * ] - '';
}
head = ;
int tmp;
for (int k = ; k <= N; k++)
{
bool found =false;
for (int i = head; i ; i = next[i])
{
if (pick[k][i])
{
if (i == head) head = k;
else next[tmp] = k;
next[k] = i;
found = true;
break;
}
else tmp = i;
}
if (!found) next[tmp] = k;
}
cout << "" << endl << N << endl;
for (int i = head; i ; i = next[i])
{
if (i == head) cout << i;
else cout << ' ' << i;
}
cout << endl;
}
return ;
}
Vj(m<j<=k)与Vk+1的弧的方向为<Vj,Vk+1>,这时依然可以构造哈密顿路 V1,V2,...,Vi,...,Vk,Vk+1;
UVALIVE 2954 Task Sequences的更多相关文章
- poj 1776 Task Sequences
http://poj.org/problem?id=1776 题意: 有一个机器要完成N个作业, 给你一个N*N的矩阵, M[i][j]=1,表示完成第i个作业后不用重启机器,继续去完成第j个作业 M ...
- UVALive - 4885 Task 差分约束
Task 题目连接: https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page ...
- 【差分约束系统】【spfa】UVALive - 4885 - Task
差分约束系统讲解看这里:http://blog.csdn.net/xuezhongfenfei/article/details/8685313 模板题,不多说.要注意的一点是!!!对于带有within ...
- POJ 1776 Task Sequences(竞赛图构造哈密顿通路)
链接:http://poj.org/problem?id=1776 本文链接:http://www.cnblogs.com/Ash-ly/p/5458635.html 题意: 有一个机器要完成一个作业 ...
- SCCM 2012 R2安装部署过程和问题(三)
上篇 SCCM 2012 R2安装部署过程和问题(二) 个人认为对于使用SCCM 2012的最重要的经验是耐心. SCCM采用分布式部署的架构,不同的站点角色可以部署在不同的服务器上,站点角色之间的通 ...
- 别人整理的DP大全(转)
动态规划 动态规划 容易: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ...
- dp题目列表
此文转载别人,希望自己能够做完这些题目! 1.POJ动态规划题目列表 容易:1018, 1050, 1083, 1088, 1125, 1143, 1157, 1163, 1178, 1179, 11 ...
- MDT部署中命令行脚本的使用。
参考:http://blogs.technet.com/b/deploymentguys/archive/2010/07/07/using-command-shell-scripts-with-mdt ...
- poj 动态规划题目列表及总结
此文转载别人,希望自己能够做完这些题目! 1.POJ动态规划题目列表 容易:1018, 1050, 1083, 1088, 1125, 1143, 1157, 1163, 1178, 1179, 11 ...
随机推荐
- TortoiseSVN的安装使用
下面分享一篇关于TortoiseSVN的安装以及使用 1.运行TortoiseSVN-1.6.6.17493-win32-svn-1.6.6.msi程序, 开始安装 2.点击Next, 下一步 3.选 ...
- 让PC版网站在移动端原样式显示
一般PC网站在移动端显示效果往往和PC版原样式不同,为了在移动端下还原原PC站样式,可以采用以下方式解决: 1) 去掉页头的: <meta name="viewport" c ...
- Oracle to MySQL Goldengate实现增量迁移
第一部分:安装和基本配置 一.环境 两台rhel 6.4虚拟机,分别异构oracle到mysql数据库同步测试Ip:192.168.0.23 部署oracle 11.2.0.4,goldgate 12 ...
- HDU 4744 Starloop System(最小费用最大流)(2013 ACM/ICPC Asia Regional Hangzhou Online)
Description At the end of the 200013 th year of the Galaxy era, the war between Carbon-based lives a ...
- 最小生成树(MST)
原创 今天来说说最小生成树问题,我们知道最小生成树有两种求法,一种是prim算法,另一种是kruskal算法,关于两种算法的定义以及证明,请查看相关资料,这里不多说,理解起来也相当容易,我们来看一个问 ...
- 【Linux】——搭建nexus
1.安装 前提条件: JDK已经安装,运行java -version查看. 将本地下载好的nexus存放到linux上,存放路径为 /usr/local/software.可使用winscp直接拷贝. ...
- QT启动一个工程
功能描述: 模拟如下页面. 当输入一个字符串时打开对应的应用程序. 实现方法: 1. 建立工程 2. 界面编辑: 3. 在test1.h中添加slot声明 4. test1.cpp中添加slot定义 ...
- microtime()
PHP函数microtime()返回当前 Unix 时间戳和微秒数.
- JavaScript页面跳转
<%@ page contentType="text/html;charset=UTF-8" language="java" pageEncoding=& ...
- [洛谷P2626]斐波那契数列(升级版)
题目大意:请你求出第$n$个斐波那契数列的数$mod 2^{31}$之后的值.并把它分解质因数. 题解:乱搞 卡点:1.忘记取模 C++ Code: #include<cstdio> #i ...