CF 1006B Polycarp's Practice【贪心】
Polycarp is practicing his problem solving skill. He has a list of n problems with difficulties a1,a2,…,an, respectively. His plan is to practice for exactly k days. Each day he has to solve at least one problem from his list. Polycarp solves the problems in the order they are given in his list, he cannot skip any problem from his list. He has to solve all n problems in exactly k days.
Thus, each day Polycarp solves a contiguous sequence of (consecutive) problems from the start of the list. He can't skip problems or solve them multiple times. As a result, in k days he will solve all the n problems.
The profit of the j-th day of Polycarp's practice is the maximum among all the difficulties of problems Polycarp solves during the j-th day (i.e. if he solves problems with indices from l to r during a day, then the profit of the day is maxl≤i≤rai). The total profit of his practice is the sum of the profits over all k days of his practice.
You want to help Polycarp to get the maximum possible total profit over all valid ways to solve problems. Your task is to distribute all n problems between k days satisfying the conditions above in such a way, that the total profit is maximum.
For example, if n=8,k=3 and a=[5,4,2,6,5,1,9,2], one of the possible distributions with maximum total profit is: [5,4,2],[6,5],[1,9,2]. Here the total profit equals 5+6+9=20.
Input
The first line of the input contains two integers n and k (1≤k≤n≤2000) — the number of problems and the number of days, respectively.
The second line of the input contains n integers a1,a2,…,an (1≤ai≤2000) — difficulties of problems in Polycarp's list, in the order they are placed in the list (i.e. in the order Polycarp will solve them).
Output
In the first line of the output print the maximum possible total profit.
In the second line print exactly k positive integers t1,t2,…,tk (t1+t2+⋯+tk must equal n), where tj means the number of problems Polycarp will solve during the j-th day in order to achieve the maximum possible total profit of his practice.
If there are many possible answers, you may print any of them.
Examples
Input
8 3
5 4 2 6 5 1 9 2
Output
20
3 2 3
Input
5 1
1 1 1 1 1
Output
1
5
Input
4 2
1 2000 2000 2
Output
4000
2 2
Note
The first example is described in the problem statement.
In the second example there is only one possible distribution.
In the third example the best answer is to distribute problems in the following way: [1,2000],[2000,2]. The total profit of this distribution is 2000+2000=4000.
【题意】:给定一个数字n和m和大小为n的数组,将数组分为m个区间,要求区间最大值之和最大值以及分区大小(不唯一)。
【分析】:用结构体记录数值和位置,由大到小排序得到前k个数值之和就是最大值。难点是求分区大小,可以建立一个新数组id记录前k大数的位置,注意位置需要从小到大排序。比如第一个样例就是0 3 6,那么分区为3 3 2——>3-0/6-3/8-6
【代码】:
#include <bits/stdc++.h>
using namespace std;
const int N = 2e5 + 10;
int n,m;
struct node
{
int num,pos;
}a[N];
vector<int> v;
int id[N];
bool cmp(node a,node b)
{
return a.num > b.num;
}
int main()
{
scanf("%d%d",&n,&m);
int ans = 0;
for(int i=0;i<n;i++)
{
scanf("%d",&a[i].num);
a[i].pos = i;
}
sort(a,a+n,cmp);
for(int i=0; i<m; i++)
{
id[i] = a[i].pos;
ans += a[i].num;
}
cout<<ans<<endl;
id[m]=n;
sort(id,id+m+1);
printf("%d ",id[1]);
for(int i=1; i<m-1; i++)
{
printf("%d ",id[i+1]-id[i]);
}
if(m!=1) printf("%d\n",id[m]-id[m-1]);
}
CF 1006B Polycarp's Practice【贪心】的更多相关文章
- CF #374 (Div. 2) D. 贪心,优先队列或set
1.CF #374 (Div. 2) D. Maxim and Array 2.总结:按绝对值最小贪心下去即可 3.题意:对n个数进行+x或-x的k次操作,要使操作之后的n个数乘积最小. (1)优 ...
- CF 435B Pasha Maximizes(贪心)
题目链接: [传送门][1] Pasha Maximizes time limit per test:1 second memory limit per test:256 megabytes ...
- [CF #288-C] Anya and Ghosts (贪心)
题目链接:http://codeforces.com/contest/508/problem/C 题目大意:给你三个数,m,t,r,代表晚上有m个幽灵,我有无限支蜡烛,每支蜡烛能够亮t秒,房间需要r支 ...
- cf 605A Sorting Railway Cars 贪心 简单题
其实就是求总长度 - 一个最长“连续”自序列的长度 最长“连续”自序列即一个最长的lis,并且这个lis的值刚好是连续的,比如4,5,6... 遍历一遍,贪心就是了 遍历到第i个时,此时值为a[i], ...
- CF 1141C Polycarp Restores Permutation
Description An array of integers p1,p2,…,pnp1,p2,…,pn is called a permutation if it contains each nu ...
- CF D. Walking Between Houses (贪心)
题意: 现在有n个房子排成一列,编号为1~n,起初你在第1个房子里,现在你要进行k次移动,每次移动一都可以从一个房子i移动到另外一个其他的房子j里(i != j),移动的距离为|j - i|.问你进过 ...
- CF:322D - Ciel and Duel 贪心 或者 DP 我用的贪心 。。难道sort跟qsort是不一样的么?
D. Ciel and Duel time limit per test 2 seconds memory limit per test 256 megabytes input standard in ...
- CF 360E Levko and Game——贪心
题目:http://codeforces.com/contest/360/problem/E 官方题解与证明:http://codeforces.com/blog/entry/9529 一条可以调整的 ...
- nyoj 1216——整理图书 CF 229D—— Towers——————【dp+贪心】
整理图书 时间限制:3000 ms | 内存限制:65535 KB 难度:5 描述 小明是图书鹳狸猿,他有很多很多的书堆在了一起摆在了架子上,每摞书是横着放的,而且每摞书是订好的 是一个整体, ...
随机推荐
- request.getParameterMap() 获取表单提交的键值对 并且 也能获取动态表单的key
Map<String,String[]> map = request.getParameterMap();Set<String> keys = map.keySet(); 获取 ...
- P2161 [SHOI2009]会场预约
题目描述 PP大厦有一间空的礼堂,可以为企业或者单位提供会议场地.这些会议中的大多数都需要连续几天的时间(个别的可能只需要一天),不过场地只有一个,所以不同的会议的时间申请不能够冲突.也就是说,前一个 ...
- bootstrap-table 增加序号列(支持分页)
columns: [ { checkbox: true }, { title: '序号', align: 'center', halign: 'center', formatter: function ...
- [洛谷P2626]斐波那契数列(升级版)
题目大意:请你求出第$n$个斐波那契数列的数$mod 2^{31}$之后的值.并把它分解质因数. 题解:乱搞 卡点:1.忘记取模 C++ Code: #include<cstdio> #i ...
- 算法学习——kruskal重构树
kruskal重构树是一个比较冷门的数据结构. 其实可以看做一种最小生成树的表现形式. 在普通的kruskal中,如果一条边连接了在2个不同集合中的点的话,我们将合并这2个点所在集合. 而在krusk ...
- pb_ds
#include<ext/pb_ds/priority_queue.hpp>#define ll long long#define pa pair<ll,int>using n ...
- 在JS中,一切东东其实都是对象
对象是组成JavaScript的基本单元,在JS中,一切东东其实都是对象,而且功能非常强大,它不仅风格独特,功能也与众不同. 一.引用(reference) 引用的概念是JS的基础之一,它是指向对象实 ...
- Asp.net MVC Combres的简单用法
第一步:添加nuget包 [1]添加 nuget包后,会自动在 webconfig里面 添加配置文件(不用改) <section name="dotless" type=&q ...
- HDU 1556 线段树/树状数组/区间更新姿势 三种方法处理
Color the ball Time Limit: 9000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)To ...
- jquery的ajax实现方式
在JQuery中,AJAX有三种实现方式:$.ajax() , $.post , $.get(). 首先我们看$.get(): .代码如下: $.get("test.jsp", { ...