Description

Have you ever thought about comparing the weight of fruits? That’s what you should do in this problem! Given a series of fruit weight comparisons, you should anticipate the result of another comparison. In this problem, all fruits of the same kind are identical and have the same weights. Each fruit weight comparison is something like “a X ≤ b Y” in which a and b are positive integers, and X and Y are fruit names. Such a comparison means that the weight of a fruits of type X is less than or equal to the weight of b fruits of type Y.

Input

The input contains multiple test cases. Each test case starts with a line containing n, which is the number of given comparisons. Each of the next n lines gives a comparison in the form of “a X b Y” meaning that “a X ≤ b Y”. The last line of each test case contains the comparison query in the same form of “a X b Y” inquiring the comparison of “a X” and “b Y”. 
A case of n = 0 shows the end of input and should not be processed. All integers in the input (except the last n which is 0) are positive and are not greater than 100. Fruit names are case-sensitive strings of (lowercase and uppercase) letters with length no more than 50.

Output

For each test case, write one line with your result for that test case. Your result can be one of the followings (assume the comparison query was “a X b Y”):  “<=”: meaning you are sure that “a X ≤ b Y”.  “>=”: meaning you are sure that “a X ≥ b Y”.  “==”: meaning you are sure that “a X = b Y” (i.e. you have reached both of the above results).  “UNAVAILABLE”: meaning that you can say nothing for sure in comparing “a X” and “b Y” (i.e. you have reached none of the above results).  “INCONSISTENT”: meaning that there is an inconsistency in the given comparisons (i.e. you are sure that all the given comparisons for that test case cannot hold at the same time).

题目大意:给n条aX ≤ bY的不等式,其中X、Y是未知数的符号,a、b是常数。最后给出aX ? bY,要求判断 ? 是哪个符号。如果相等输出==,大于等于输出>=,小于等于输出<=,不能判断输出UNAVAILABLE,n条不等式不可能同时成立输出INCONSISTENT。

思路:首先X、Y是各种各样的字符串,所以先离散化,C++里面的map<string, int>是不错的选择。然后我们就要考虑,不同的不等式,该怎样才能联立起来。比如2a ≤ 3b,5b ≤ 7c,这样就会确定了一个关于a和c的不等式,然而我们须要表现在代码里面,不是很容易做到。

所以移向,2/3 a ≤ b, 5/7 b ≤ c,如果 c 到 b 连一条边,权值为 5/7; b 到 a 连一条边,权值为 2/3。那么,我们从 c 走到 a,就可以得到 (5/7 * 2/3) * a ≤ c。如果有假设提问是x * a ? y * c,那么对所有x/y ≤ (5/7 * 2/3),因为若p ≤ q,有pa ≤ qa ≤ qc。

然后对每一条边,取最大的权值。因为若有两条边pa ≤ pc,qa ≤ qc,且p ≤ q,那么我们只要保留qa ≤ qc,那么我们就可以推断出pa ≤ pc。

根据上述推论,我们用floyd来直接求出最长路径,mat[j][i]代表mat[j][i] * i ≤ j。n个不等式冲突,就说明存在mat[i][i] > 1,令mat[i][i] * i ≤ i无法成立,输出INCONSISTENT。对询问x * i ? y * j,若有y/x = mat[i][j]且x/y = mat[j][i],那么有x * i = y * j。若有y/x ≤ mat[i][j],则有x * i ≥ y * j。若 x/y ≤ mat[j][i],则有x * i ≤ y * j。若前面都不成立,则说明无法判断,输出UNAVAILABLE。

对于询问x * i ? y * j, i 或 j 前面都没有出现过的,好像是没有这种情况,别人没管这个也能AC。

PS:之前闲得无聊写了一个分数类结果RE了,大概是乘起来太大然后求约数的时候被零除跪了,好吧这不是重点。

PS2:最短路径的那个代码就是把原来的mat[j][i] * i ≤ j换成了i ≤ j * mat[j][i],思路差不多。

代码(125MS)(最长路径):

 #include <cstdio>
#include <cstring>
#include <map>
#include <string>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long LL; const int MAXN = ;
const double EPS = 1e-; map<string, int> mp;
string a, b;
int m, n; double x, y;
int aid, bid;
double mat[MAXN][MAXN]; inline int sgn(double x) {
return (x > EPS) - (x < -EPS);
} bool floyd() {
for(int k = ; k <= n; ++k)
for(int i = ; i <= n; ++i) if(mat[i][k] > )
for(int j = ; j <= n; ++j) if(mat[k][j] > )
if(mat[i][k] * mat[k][j] > mat[i][j]) mat[i][j] = mat[i][k] * mat[k][j];
/*
for(int k = 1; k <= n; ++k)
for(int i = 1; i <= n; ++i) if(mat[i][k] > 0)
for(int j = 1; j <= n; ++j) if(mat[k][j] > 0)
if(mat[i][j] > 0 && sgn(mat[i][k] * mat[k][j] - mat[i][j]) == 1) return false;*/
for(int i = ; i <= n; ++i)
for(int j = i + ; j <= n; ++j) {
if(mat[i][j] < || mat[j][i] < ) continue;
if(mat[i][j] * mat[j][i] > ) return false;
}
return true;
} int main() {
ios::sync_with_stdio(false);
while(cin>>m) {
if(m == ) break;
n = ;
mp.clear();
for(int i = ; i < MAXN; ++i) {
for(int j = ; j < MAXN; ++j) mat[i][j] = -;
mat[i][i] = ;
}
for(int i = ; i < m; ++i) {
cin>>x>>a>>y>>b;
if(mp.find(a) != mp.end()) aid = mp[a];
else mp[a] = aid = ++n;
if(mp.find(b) != mp.end()) bid = mp[b];
else mp[b] = bid = ++n;
//if(mat[aid][bid] < double(x, y)) mat[aid][bid] = double(x, y);
if(mat[bid][aid] < x / y) mat[bid][aid] = x / y;
}
cin>>x>>a>>y>>b;
if(!floyd()) {
puts("INCONSISTENT");
continue;
}
if(mp.find(a) == mp.end() || mp.find(b) == mp.end()) {
puts("UNAVAILABLE");
continue;
}
aid = mp[a];
bid = mp[b];
if(sgn(mat[aid][bid] - y / x) == && sgn(mat[bid][aid] - x / y) == ) {
puts("==");
continue;
}
if(mat[bid][aid] > && sgn(mat[bid][aid] - x / y) >= ) {
puts("<=");
continue;
}
if(mat[aid][bid] > && sgn(mat[aid][bid] - y / x) >= ) {
puts(">=");
continue;
}
puts("UNAVAILABLE");
}
}

代码(125MS)(最短路径):

 #include <cstdio>
#include <cstring>
#include <map>
#include <string>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long LL; const int MAXN = ;
const double EPS = 1e-; map<string, int> mp;
string a, b;
int m, n; double x, y;
int aid, bid;
double mat[MAXN][MAXN]; inline int sgn(double x) {
return (x > EPS) - (x < -EPS);
} bool floyd() {
for(int k = ; k <= n; ++k)
for(int i = ; i <= n; ++i) if(mat[i][k] > )
for(int j = ; j <= n; ++j) if(mat[k][j] > )
if(mat[i][j] < || mat[i][k] * mat[k][j] < mat[i][j]) mat[i][j] = mat[i][k] * mat[k][j];
for(int i = ; i <= n; ++i)
for(int j = i + ; j <= n; ++j) {
if(mat[i][j] < || mat[j][i] < ) continue;
if(sgn(mat[i][j] * mat[j][i] - ) < ) return false;
}
return true;
} int main() {
ios::sync_with_stdio(false);
while(cin>>m) {
if(m == ) break;
n = ;
mp.clear();
for(int i = ; i < MAXN; ++i) {
for(int j = ; j < MAXN; ++j) mat[i][j] = -;
mat[i][i] = ;
}
for(int i = ; i < m; ++i) {
cin>>x>>a>>y>>b;
if(mp.find(a) != mp.end()) aid = mp[a];
else mp[a] = aid = ++n;
if(mp.find(b) != mp.end()) bid = mp[b];
else mp[b] = bid = ++n;
if(aid == bid) continue;
//if(mat[aid][bid] < double(x, y)) mat[aid][bid] = double(x, y);
if(mat[bid][aid] < || mat[bid][aid] > y / x) mat[bid][aid] = y / x;
}
cin>>x>>a>>y>>b;
if(!floyd()) {
puts("INCONSISTENT");
continue;
}
if(mp.find(a) == mp.end() || mp.find(b) == mp.end()) {
puts("UNAVAILABLE");
continue;
}
aid = mp[a];
bid = mp[b];
if(sgn(mat[aid][bid] - x / y) == && sgn(mat[bid][aid] - y / x) == ) {
puts("==");
continue;
}
if(mat[bid][aid] > && sgn(mat[bid][aid] - y / x) <= ) {
puts("<=");
continue;
}
if(mat[aid][bid] > && sgn(mat[aid][bid] - x / y) <= ) {
puts(">=");
continue;
}
puts("UNAVAILABLE");
}
}

POJ 3860 Fruit Weights(数学+最长路径 or 最短路径)的更多相关文章

  1. POJ 1797 Heavy Transportation(Dijkstra变形——最长路径最小权值)

    题目链接: http://poj.org/problem?id=1797 Background Hugo Heavy is happy. After the breakdown of the Carg ...

  2. 【POJ 3162】 Walking Race (树形DP-求树上最长路径问题,+单调队列)

    Walking Race   Description flymouse's sister wc is very capable at sports and her favorite event is ...

  3. Going from u to v or from v to u? POJ - 2762(强连通 有向最长路径)

    In order to make their sons brave, Jiajia and Wind take them to a big cave. The cave has n rooms, an ...

  4. ubuntu 终端设置(颜色与长路径)

    Linux给人最大的享受就是可以根据个人喜好去定制令自己舒服的系统配置,像终端颜色的设置就是一个典型的例子. 图1 系统默认状态下的终端显示     在没有经过自定义配置的终端下工作久了,难免容易疲劳 ...

  5. Codefroces Gym 100781A(树上最长路径)

    http://codeforces.com/gym/100781/attachments 题意:有N个点,M条边,问对两两之间的树添加一条边之后,让整棵大树最远的点对之间的距离最近,问这个最近距离是多 ...

  6. poj 2533 Longest Ordered Subsequence 最长递增子序列

    作者:jostree 转载请注明出处 http://www.cnblogs.com/jostree/p/4098562.html 题目链接:poj 2533 Longest Ordered Subse ...

  7. hdoj 2196 Computer【树的直径求所有的以任意节点为起点的一个最长路径】

    Computer Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Su ...

  8. AOE网上的关键路径(最长路径 + 打印路径)

    题目描述 一个无环的有向图称为无环图(Directed Acyclic Graph),简称DAG图.     AOE(Activity On Edge)网:顾名思义,用边表示活动的网,当然它也是DAG ...

  9. HDU 1069 Monkey and Banana / ZOJ 1093 Monkey and Banana (最长路径)

    HDU 1069 Monkey and Banana / ZOJ 1093 Monkey and Banana (最长路径) Description A group of researchers ar ...

随机推荐

  1. papers-06-02

    午睡被同事吵醒,只好干活.看到微信公众号有一篇文章说老朋友呢,点进去发现原来相关的工作好多,而且好新好细致. 微信的文章可以见这里: 探究最陌生的老朋友Softmax 里面的几篇文章可以看看. Lar ...

  2. c语言描述的快速排序法

    #include<stdio.h> #include<stdlib.h> void QuikSort(int a[],int m,int n){ //第一个数作为关键字,比他大 ...

  3. java 后台返回文件流到浏览器

    package com.springbootblog.controller; import io.swagger.annotations.ApiImplicitParam;import io.swag ...

  4. #leetcode刷题之路4-寻找两个有序数组的中位数

    给定两个大小为 m 和 n 的有序数组 nums1 和 nums2.请你找出这两个有序数组的中位数,并且要求算法的时间复杂度为 O(log(m + n)).你可以假设 nums1 和 nums2 不会 ...

  5. 利用python和opencv批量去掉图片黑边

    import os import cv2 import numpy as np from scipy.stats import mode import time import concurrent.f ...

  6. jQuery(二)事件

    鼠标事件: click dblclick mouseenter:鼠标进入 mouseleave:鼠标离开 hover:鼠标悬停 <!DOCTYPE html> <html> & ...

  7. 13.4.3 鼠标与滚轮事件【JavaScript高级程序设计第三版】

    鼠标事件是Web 开发中最常用的一类事件,毕竟鼠标还是最主要的定位设备.DOM3 级事件中定义了9 个鼠标事件,简介如下. click:在用户单击主鼠标按钮(一般是左边的按钮)或者按下回车键时触发.这 ...

  8. 【PHP项目】产品新增的多图上传

    产品新增:多图上传 1:html的更改 在 type=file的input框中添加multiple="multiple" name属性中必须添加[] ,否则$_FILES只能接收最 ...

  9. MongoDB在单机上搭建分片副本集群(windows)

    ------------------------------1.安装MongoDB...... ------------------------------2.准备好文件夹 --config:配置文件 ...

  10. 八、USB驱动分析

    学习目标:分析USB驱动源码结构. 一.Windows下USB驱动理论问题 1. 当usb设备接入PC时,右下角弹出"发现AAA",并弹出对话框,提示安装驱动程序.没有驱动程序,W ...