题目的意思是对于序列1,2,...,n。要你给出一种字典序最小的置换使得经过X次后变成最初状态,且要求最小的X最大。

通过理解置换的性质,问题可以等价于求x1,x2,..,xn 使得x1+x2+...+xk=n,且GLM(x1,x2,...,xn)最大。

这个就用dp来做,首先求出100内的所有素数记录为prime[1] 到 prime[25]。

状态:dp[i][j] 表示花费了i,且已经使用prime[1] 到 prime[j],的最大值。

转移方程:因为要求最大值,单纯的用素数的积并不能得到最大值,最大值得形式是prime[1]^s1*prime[2]^s2*...*prime[25]^s25

for(int i=;i<=cnt;i++)
{
long long tmp[];
for(int j=;j<=n;j++)
tmp[j]=dp[j];
for(int k=;mypow(saveprime[i],k)<=n;k++)
{
long long tmpnum=mypow(saveprime[i],k);
for(int j=tmpnum;j<=n;j++)
{
dp[j]=max(tmp[j-tmpnum]*tmpnum,dp[j]);
}
}
}
The shuffle Problem
Time Limit: 3000MS   Memory Limit: 65536K
Total Submissions: 1882   Accepted: 626

Description

Any case of shuffling of n cards can be described with a permutation of 1 to n. Thus there are totally n! cases of shuffling. Now suppose there are 5 cards, and a case of shuffle is <5, 3, 2, 1, 4>, then the shuffle will be:

Before shuffling:1, 2, 3, 4, 5
The 1st shuffle:5, 3, 2, 1, 4
The 2nd shuffle:4, 2, 3, 5, 1
The 3rd shuffle:1, 3, 2, 4, 5
The 4th shuffle:5, 2, 3, 1, 4
The 5th shuffle:4, 3, 2, 5, 1
The 6th shuffle:1, 2, 3, 4, 5(the same as it is in the beginning)

You'll find that after six shuffles, the cards' order returns the beginning. In fact, there is always a number m for any case of shuffling that the cards' order returns the beginning after m shuffles. Now your task is to find the shuffle with the largest m. If there is not only one, sort out the one with the smallest order.

Input

The first line of the input is an integer T which indicates the number of test cases. Each test case occupies a line, contains an integer n (1 ≤ n ≤ 100).

Output

Each test case takes a line, with an integer m in the head, following the case of shuffling.
 

Sample Input

2
1
5

Sample Output

1 1
6 2 1 4 5 3
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <stdlib.h>
#include <algorithm>
#include <iostream>
using namespace std; int saveprime[];
long long dp[];
int saveans[];
int mypow(int x,int y)
{
int sum=;
for(int i=;i<=y;i++)
sum*=x;
return sum;
} int main()
{
int cnt=;
for(int i=;i<=;i++)
{
int flag=;
for(int j=;j<i;j++)
{
if(i%j==)
{
flag=;
break;
}
}
if(flag==)
{
saveprime[++cnt]=i;
}
} int T;
cin>>T;
while(T--)
{
int n;
cin>>n;
for(int i=;i<=n;i++)
dp[i]=;
for(int i=;i<=cnt;i++)
{
long long tmp[];
for(int j=;j<=n;j++)
tmp[j]=dp[j];
for(int k=;mypow(saveprime[i],k)<=n;k++)
{
long long tmpnum=mypow(saveprime[i],k);
for(int j=tmpnum;j<=n;j++)
{
dp[j]=max(tmp[j-tmpnum]*tmpnum,dp[j]);
}
}
}
cout<<dp[n];
long long mx=dp[n];
int anscnt=;
int anssum=;
for(int i=;i<;i++)
saveans[i]=;
for(int i=;i<=cnt;i++)
{
int sign=;
while(mx%saveprime[i]==)
{
saveans[anscnt] *= saveprime[i];
mx /= saveprime[i];
sign=;
}
if(sign==)
{
anssum += saveans[ anscnt ];
anscnt++;
}
}
sort(saveans,saveans+anscnt); //printf("\n");
//for(int i=0;i<anscnt;i++)
//printf("%d ",saveans[i]);
//printf("\n");
for(int i=;i<=n-anssum;i++)
{
printf(" %d",i);
}
int pos=n-anssum;
for(int i=;i<anscnt;i++)
{
for(int j=;j<=saveans[i];j++)
printf(" %d",pos+j);
printf(" %d",pos+);
pos+=saveans[i];
}
printf("\n");
}
return ;
}

poj 3590(dp 置换)的更多相关文章

  1. poj 3590 The shuffle Problem——DP+置换

    题目:http://poj.org/problem?id=3590 bzoj 1025 的弱化版.大概一样的 dp . 输出方案的时候小的环靠前.不用担心 dp 时用 > 还是 >= 来转 ...

  2. POJ 3590 The shuffle Problem [置换群 DP]

    传送门 $1A$太爽了 从此$Candy?$完全理解了这种$DP$做法 和bzoj1025类似,不过是求最大的公倍数,并输出一个字典序最小的方案 依旧枚举质因子和次数,不足的划分成1 输出方案从循环长 ...

  3. hdu 1513 && 1159 poj Palindrome (dp, 滚动数组, LCS)

    题目 以前做过的一道题, 今天又加了一种方法 整理了一下..... 题意:给出一个字符串,问要将这个字符串变成回文串要添加最少几个字符. 方法一: 将该字符串与其反转求一次LCS,然后所求就是n减去 ...

  4. poj 1080 dp如同LCS问题

    题目链接:http://poj.org/problem?id=1080 #include<cstdio> #include<cstring> #include<algor ...

  5. poj 1609 dp

    题目链接:http://poj.org/problem?id=1609 #include <cstdio> #include <cstring> #include <io ...

  6. POJ 1037 DP

    题目链接: http://poj.org/problem?id=1037 分析: 很有分量的一道DP题!!! (参考于:http://blog.csdn.net/sj13051180/article/ ...

  7. poj3270 && poj 1026(置换问题)

    | 1 2 3 4 5 6 | | 3 6 5 1 4 2 | 在一个置换下,x1->x2,x2->x3,...,xn->x1, 每一个置换都可以唯一的分解为若干个不交的循环 如上面 ...

  8. Jury Compromise POJ - 1015 dp (标答有误)背包思想

    题意:从 n个人里面找到m个人  每个人有两个值  d   p     满足在abs(sum(d)-sum(p)) 最小的前提下sum(d)+sum(p)最大 思路:dp[i][j]  i个人中  和 ...

  9. poj 1485 dp

    转自:http://www.cnblogs.com/kuangbin/archive/2011/11/12/2246407.html [题目大意] 一条公路上有n个旅馆,选出其中k个设置仓库,一个仓库 ...

随机推荐

  1. 基于zookeeper+leveldb搭建activemq集群--转载

    原地址:http://www.open-open.com/lib/view/open1410569018211.html 自从activemq5.9.0开始,activemq的集群实现方式取消了传统的 ...

  2. Python趣味实用小工具

    代码地址如下:http://www.demodashi.com/demo/12918.html python 趣味实用小工具 概述 用python实现的三个趣味实用小工具: 图片转Execl工具 , ...

  3. (四)EasyUI 使用——form表单2 & window窗口

    form表单组件主要有以下内容(如下图)      6. progressbar进度条  每隔1秒让进度条按随机数填充,直至充满进度条刻度(只能执行一次) 进度条: <div id=" ...

  4. Centos下Subversion 服务器安装配置

    1.安装 # yum install subversion 2. svn配置 建立svn版本库目录可建多个:2.1 新建文件夹: # mkdir -p /opt/svndata/repos 2.2 建 ...

  5. JPA联合主键@EmbeddedId使用详解附查询例子

    花了2个小时的时间解决这个问题,网上资料太少,记录下     详情看源文件TBicPrmCompute,TBicPrmComputePK package com.isoftstone.core.dom ...

  6. 数据库面试题.net

    1.ADO.net中常用的对象 connection, command, sqladapter, dataset, dataview. 2.net中读写数据库要用到哪些类 DataSet数据存储 Da ...

  7. 影子寄存器(shadow register)

    1.以下仅供参考:有阴影的寄存器,表示在物理上这个寄存器对应2个寄存器,一个是程序员可以写入或读出的寄存器,称为preload register(预装载寄存器),另一个是程序员看不见的.但在操作中真正 ...

  8. iOS10 获取系统通讯录新方法

    #import <ContactsUI/ContactsUI.h> 遵循代理 CNContactPickerDelegate 调用通讯录 如果在iOS10的机器上调用以前的ABPeople ...

  9. iOS开发--用户点击频繁,多个异步网络请求取消问题?

    一.业务环境描述 当一个view同时添加两个tableView为subView的时候,两个tableView分别为mainTable和subTable. 当用户点击mainTable上的某一条数据时, ...

  10. C - Aladdin and the Flying Carpet 有多少种长方形满足面积为a(<=10^12),且最短边>=b;长方形边长为整数,且一定不可以是正方形。

    /** 题目:C - Aladdin and the Flying Carpet 链接:https://vjudge.net/contest/154246#problem/C 题意:有多少种长方形满足 ...