poj 3590(dp 置换)
题目的意思是对于序列1,2,...,n。要你给出一种字典序最小的置换使得经过X次后变成最初状态,且要求最小的X最大。
通过理解置换的性质,问题可以等价于求x1,x2,..,xn 使得x1+x2+...+xk=n,且GLM(x1,x2,...,xn)最大。
这个就用dp来做,首先求出100内的所有素数记录为prime[1] 到 prime[25]。
状态:dp[i][j] 表示花费了i,且已经使用prime[1] 到 prime[j],的最大值。
转移方程:因为要求最大值,单纯的用素数的积并不能得到最大值,最大值得形式是prime[1]^s1*prime[2]^s2*...*prime[25]^s25
for(int i=;i<=cnt;i++)
{
long long tmp[];
for(int j=;j<=n;j++)
tmp[j]=dp[j];
for(int k=;mypow(saveprime[i],k)<=n;k++)
{
long long tmpnum=mypow(saveprime[i],k);
for(int j=tmpnum;j<=n;j++)
{
dp[j]=max(tmp[j-tmpnum]*tmpnum,dp[j]);
}
}
}
| Time Limit: 3000MS | Memory Limit: 65536K | |
| Total Submissions: 1882 | Accepted: 626 |
Description
Any case of shuffling of n cards can be described with a permutation of 1 to n. Thus there are totally n! cases of shuffling. Now suppose there are 5 cards, and a case of shuffle is <5, 3, 2, 1, 4>, then the shuffle will be:
Before shuffling:1, 2, 3, 4, 5
The 1st shuffle:5, 3, 2, 1, 4
The 2nd shuffle:4, 2, 3, 5, 1
The 3rd shuffle:1, 3, 2, 4, 5
The 4th shuffle:5, 2, 3, 1, 4
The 5th shuffle:4, 3, 2, 5, 1
The 6th shuffle:1, 2, 3, 4, 5(the same as it is in the beginning)
You'll find that after six shuffles, the cards' order returns the beginning. In fact, there is always a number m for any case of shuffling that the cards' order returns the beginning after m shuffles. Now your task is to find the shuffle with the largest m. If there is not only one, sort out the one with the smallest order.
Input
The first line of the input is an integer T which indicates the number of test cases. Each test case occupies a line, contains an integer n (1 ≤ n ≤ 100).
Output
Each test case takes a line, with an integer m in the head, following the case of shuffling.
Sample Input
2
1
5
Sample Output
1 1
6 2 1 4 5 3
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <stdlib.h>
#include <algorithm>
#include <iostream>
using namespace std; int saveprime[];
long long dp[];
int saveans[];
int mypow(int x,int y)
{
int sum=;
for(int i=;i<=y;i++)
sum*=x;
return sum;
} int main()
{
int cnt=;
for(int i=;i<=;i++)
{
int flag=;
for(int j=;j<i;j++)
{
if(i%j==)
{
flag=;
break;
}
}
if(flag==)
{
saveprime[++cnt]=i;
}
} int T;
cin>>T;
while(T--)
{
int n;
cin>>n;
for(int i=;i<=n;i++)
dp[i]=;
for(int i=;i<=cnt;i++)
{
long long tmp[];
for(int j=;j<=n;j++)
tmp[j]=dp[j];
for(int k=;mypow(saveprime[i],k)<=n;k++)
{
long long tmpnum=mypow(saveprime[i],k);
for(int j=tmpnum;j<=n;j++)
{
dp[j]=max(tmp[j-tmpnum]*tmpnum,dp[j]);
}
}
}
cout<<dp[n];
long long mx=dp[n];
int anscnt=;
int anssum=;
for(int i=;i<;i++)
saveans[i]=;
for(int i=;i<=cnt;i++)
{
int sign=;
while(mx%saveprime[i]==)
{
saveans[anscnt] *= saveprime[i];
mx /= saveprime[i];
sign=;
}
if(sign==)
{
anssum += saveans[ anscnt ];
anscnt++;
}
}
sort(saveans,saveans+anscnt); //printf("\n");
//for(int i=0;i<anscnt;i++)
//printf("%d ",saveans[i]);
//printf("\n");
for(int i=;i<=n-anssum;i++)
{
printf(" %d",i);
}
int pos=n-anssum;
for(int i=;i<anscnt;i++)
{
for(int j=;j<=saveans[i];j++)
printf(" %d",pos+j);
printf(" %d",pos+);
pos+=saveans[i];
}
printf("\n");
}
return ;
}
poj 3590(dp 置换)的更多相关文章
- poj 3590 The shuffle Problem——DP+置换
题目:http://poj.org/problem?id=3590 bzoj 1025 的弱化版.大概一样的 dp . 输出方案的时候小的环靠前.不用担心 dp 时用 > 还是 >= 来转 ...
- POJ 3590 The shuffle Problem [置换群 DP]
传送门 $1A$太爽了 从此$Candy?$完全理解了这种$DP$做法 和bzoj1025类似,不过是求最大的公倍数,并输出一个字典序最小的方案 依旧枚举质因子和次数,不足的划分成1 输出方案从循环长 ...
- hdu 1513 && 1159 poj Palindrome (dp, 滚动数组, LCS)
题目 以前做过的一道题, 今天又加了一种方法 整理了一下..... 题意:给出一个字符串,问要将这个字符串变成回文串要添加最少几个字符. 方法一: 将该字符串与其反转求一次LCS,然后所求就是n减去 ...
- poj 1080 dp如同LCS问题
题目链接:http://poj.org/problem?id=1080 #include<cstdio> #include<cstring> #include<algor ...
- poj 1609 dp
题目链接:http://poj.org/problem?id=1609 #include <cstdio> #include <cstring> #include <io ...
- POJ 1037 DP
题目链接: http://poj.org/problem?id=1037 分析: 很有分量的一道DP题!!! (参考于:http://blog.csdn.net/sj13051180/article/ ...
- poj3270 && poj 1026(置换问题)
| 1 2 3 4 5 6 | | 3 6 5 1 4 2 | 在一个置换下,x1->x2,x2->x3,...,xn->x1, 每一个置换都可以唯一的分解为若干个不交的循环 如上面 ...
- Jury Compromise POJ - 1015 dp (标答有误)背包思想
题意:从 n个人里面找到m个人 每个人有两个值 d p 满足在abs(sum(d)-sum(p)) 最小的前提下sum(d)+sum(p)最大 思路:dp[i][j] i个人中 和 ...
- poj 1485 dp
转自:http://www.cnblogs.com/kuangbin/archive/2011/11/12/2246407.html [题目大意] 一条公路上有n个旅馆,选出其中k个设置仓库,一个仓库 ...
随机推荐
- C# 中 in,out,ref 的作用与区别
In:过程不会改写In的内容 Out和out:传入的值不会被过程所读取,但过程可以写 ref:传入的值,过程会读,也会写 就象你把布料送到裁缝的一个收料箱(裁缝用这个区别是哪家客户) IN:这块布料, ...
- Node.js meitulu图片批量下载爬虫1.01版
在 http://www.cnblogs.com/xiandedanteng/p/7614051.html 一文我曾经书写过一个图片下载爬虫,但原有程序不是为下载图片而设计故有些绕,于是稍微改写了一下 ...
- 说说css伪元素::before和::after,你就会明白我们为什么需要它
wxml <view class='weui-loading'>#000</view> <view class='btn'><text class='gree ...
- HTTP——HTTP 1.1的详细介绍 Gunicorn不支持HTTP 1.1
从前面一小节的表格里,我们可以看到,Gunicorn 的一个缺点是不支持HTTP 1.1.那么 HTTP 1.1 究竟是怎么一回事呢?我们选择 HTTP 服务器在什么情况下需要考虑对 HTTP 1.1 ...
- 【Java】Java_12 Eclipse
1.eclipse简介 Eclipse 是一个开放源代码的.基于Java的可扩展开发平台.就其本身而言,它只是一个框架和一组服务,用于通过插件组件构建开发环境. 尽管 Eclipse 是使用Java语 ...
- jetty.xml解析
我们知道jetty有一种启动方式是在jetty的根目录中运行命令行:java -jar start.jar,这个命令会调用apache的XmlConfiguration工具类作为启动类,这个类会默认读 ...
- 基于tornado实现web camera
基于tornado实现web camera 近期在学习python.找了一个框架学习,我选择的是tornado.由于其不仅仅是一个web开发框架,其还是一个server,异步事件库,一举多得. 我一直 ...
- Audio简介
本片只简单从硬件角度简介Audio AC97/HDA Audio总线分两种: (1)I2S (2)HDA HD Audio spec Audio verb table是用来初始化audio的,一个au ...
- 怎样优雅的研究 RGSS3 番外(一) ruby 实现的后缀自己主动机
*我真的不会 ruby 呀* #encoding:utf-8 #==================================================================== ...
- Ubuntu ko模块的编译
http://blog.csdn.net/tugouxp/article/details/69053633 Linux .ko模块的生成方式 http://blog.csdn.net/fouweng/ ...